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Outline

+» A substantial share of emission increase In Africa in the
next few decades will come from cities

<+ A broad diversity of opportunities exist to keep these
emissions at bay while even increasing services
1 Urban form
] Building energy efficiency
1 Embodied energy and emissions in infrastructure

< Energy efficiency has been a very powerful tool to keep
emissions and energy use at bay worldwide

“* Many energy efficiency opportunities exist that also
contribute to development goals rather than compromise
them

“» However, there is a major lock-in risk
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[Billion Persons]

B 10 Million and more

B 5to 10 Million
1to 5 Million

B 100,000 to 1 Million

B Less than 100,000

Rural

toda 2035

A substantial share of
emission increase in
Africa in the next few
decades will come from
cities

1950
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2000 2010 2020 2030 2040 2050

Urban areas generate 80% of GDP and 71% - 76% of CO2
emissions from global energy use

Each week the urban population increases by 1.3 million
By 2050 urban population is to increase by up to 3 billion

developing country cities
This enormous expected increase poses both an opport

responsibility
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A broad diversity of opportunities exist to
keep these emissions at bay while

increasing services

“» Urban design and form
< Energy efficient buildings

l low-energy architecture

“+avoiding cooling needs

1 High-efficiency appliances, lighting and equipment

1 High performance operation of buildings (mainly commercial)
“» Fuel switch to low-carbon energy sources (RES) or high-

efficiency equipment using energy contributing to CC
— Hi eff cookstoves

“» Lowering embodied energy in the built infrastructure —
1 affordable low-carbon, durable construction materials
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Mitigation through urban design
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Infrastructure and urban form are strongly

linked and lock-in patterns of land use,

transport and housing use, and behavior
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Presentation Notes

This figure shows four concepts by which urban form can be characterized – these also function as drivers of urban emissions.
(1) The 2nd column shows the effect of the 4 drivers on Vehicles Kilometer Travelled (VKT). It turns out the increasing the drivers leads (in all but 2 cases) to a reduction of distances travelled, which in turn means less emissions.
(2) the 3rd column describes how the drivers are measured.
(3) The 4th column shows how the drivers co-vary with the (main) driver density.
(4) the last columns illustrate what leads to higher resp. lower emissions.



Increasing and co-locating residential and employment

densities can lower emissions

Higher density
leads to less
emissions

(i.a. shorter
distances
travelled).
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Increasing land use mix can significantly reduce emissions

VKT Elasticities Metrics to Measure CO-Variance Ranges
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To lower urban emissions, need diverse urban land use
mMix
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Increasing connectivity can enable multiple modes of transport

VKT Elasticities Metrics to Measure CO-Variance Ranges
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Co-location of activities reduces direct and indirect GHG
emissions

Accessibility to
people and

places (jobs,
housing,
services,

shopping)

reduces
emissions.
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Mitigation opportunities through urban
planning:

Increasing accessibility
Increasing connectivity
Increasing land use mix
Increasing transit options

iIncreasing and co-locating employment and
residential densities

Increasing green space and other carbon sinks
Increasing white and light-colored surfaces
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Normalized Global Buildings Final Energy Demand (2010
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@ Ecofys Policy

Energy efficiency
in buildings can
substantially lower
sectoral energy
use;
thermal uses are
most reducible

for further details on
mitigation options and
potentials, see Chapter 9

3CSEP




Increased efficiency has been a very

powerful tool to keep emission and

energy demand increases at bay for
decades
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Urban and buildings-level mitigation
options can also contribute towards
development goals

CENTER FOR CLIMATE CHANGE
AND SUSTAINABLE ENERGY PoLICY

CENTRAL EUROPEAN UNIVERSITY

“Overall, the potential for co-benefits for energy
end-use measures outweigh the potential

for adverse side-effects, whereas the evidence
suggests this may not be the case for all energy

supply and AFOLU measures.” (SPM 4.1)
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How mitigation options can go hand-in-
hand with development goals in Africa
(co-benetfits)

Health — 2 m annually die from indoor air pollution from cooking,
many women and children

Increased productive time for women and children
Air quality improvement — indoor and outdoor

decreasing the burden of energy generation capacity development
needs

Efficiency increases access to energy services
1 Contribution to poverty alleviation

Decreased needs for energy imports (energy security)
Better employment and economic opportunities through accessivity
Reduced congestion

Several mitigation options in buildings have been shown to haye,ne e
negative social mitigation costs 7,

’
\ ]

3CSEP




Cost of
conserved
carbon for

implemented
energy
efficiency
programs,
post-ante
evaluation
results (based
on data in
Table 9.9
(boza-kiss et.al
2013 in
COSUst)
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However, there is a major lock-in risk
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The Lock-in Risk:
global heating and cooling final energy in
two scenarios

Lock-in Effect 80%
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Thank you for your attention

Diana Urge-Vorsatz Diana
Center for Climate Change and Sustainable Energy Policy (3CSEP), CEU

http://3csep.ceu.hu www.mitigation2014.org

Email: vorsatzd@ceu.hu


http://3csep.ceu.hu/
http://www.globalenergyassessment.org/
mailto:vorsatzd@ceu.hu
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Key Message 4: Infrastructure build-up over the next
few decades will result in significant emissions

Total CO, emissions (per capita) needed

to build up today’s infrastructure
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Presentation Notes
About CRV: Quoting Müller (2013): 
In accounting, the value of an asset can be expressed, among others, as the historical cost (original monetary value) or as the replacement cost (cost of replacing an asset with current prices). Similarly, the carbon footprint of a stock can be defined as the historical emissions produced to build up the stock, or as the carbon emissions that would be generated if the existing stock was replaced using current technologies. As emissions per ton of material produced tend to decline, the replacement value expressed in carbon (here called “carbon replacement value, CRV”) is generally smaller than the historical value expressed in carbon (here called “CHV”). In this study, we determine the CRV of stocks, because this value is better suited when using the stocks in industrialized countries as a benchmark for stocks in developing countries.
The CRVP was determined for the year 2008 using the three key materials steel, cement, and aluminum as a proxy. In 2008, these materials accounted for nearly half of industrial emissions (25% steel, 19% cement, and 3% aluminum) and 17% of total energy- and process-related CO2 emissions.16 Emissions of other materials are either less significant for infrastructure stocks (e.g., plastic and paper, which together constitute about 3% energy- and process-related emissions) or contribute significantly smaller amounts of emissions (e.g., other metals, gravel).
Talking points:
Concerning emissions from building urban structures (building up stocks) it is important to understand the magnitude of future emissions awaiting us if the developing world would mimic the pathway western countries have taken.
The y-axis shows the amount of emissions (per person) needed to build the infrastructures (houses, transport (streets, railways, bridges), industry plants) existing in respective countries. You can see that developed countries (Annex I) have a far greater stock than Non-Annex I countries. 
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Key Message 4: Infrastructure build-up over the next
few decades will result in significant emissions
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Presentation Notes
Talking points:
The shaded area shows how much emissions would be needed to build in the rest of the world infrastructure of the level as existing today in developed countries. This rough estimate takes the expected increase of world population until 2050 into account (see x-axis). Compare the size of this area to the yellow-red coloured bars to see that these emissions would far outstrip the emissions needed to build up today’s infrastructure.


Key Message 5: Large mitigation opportunities exist where
urban form is not locked in, but often where there are
limited financial and institutional capacities

Government Scale

Project District City Metropolis Country

Public Land Leasing/Sale (Land Bank)
N e
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Business Improvement District Toll Lane
Cordon Pricing

Zoning Change
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Government Revenue Minus Expenditure
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Tool Categories

Expenditures
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Presentation Notes
The bulk of urban growth is expected in small‐ to medium‐size cities in developing countries. The feasibility of spatial planning instruments for climate change mitigation is highly dependent on a city’s financial and governance capability. [12.6, 12.7] 



Key Message 6: Thousands of cities are undertaking
climate action plans, but their impact on urban emissions

IS uncertain
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Presentation Notes
There has been little systematic assessment on their implementation, the extent to which emission reduction targets are being achieved, or emissions reduced. Current climate action plans focus largely on energy efficiency. Fewer climate action plans consider land‐use planning strategies and cross‐sectoral measures to reduce sprawl and promote transit‐oriented development28. [12.6, 12.7, 12.9] 



Summary

1. Urban areas contribute considerably to global primary energy demand
and energy-related CO, emissions.

2. The feasibility of spatial planning instruments for climate change
mitigation depends highly upon each city’s financial and governance
capability.

3. Urban planning mitigation options include:

Increasing accessibility

. increasing connectivity

Increasing land use mix

. Increasing transit options

. Increasing and co-locating employment and residential densities
Increasing green space and other carbon sinks
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1. The building sector is responsible for a
high share of emissions

In 2010, the building sector accounted for
117 EJ or 32% of global final energy

<+ 25% of energy-related CO2 emissions (9.2 Gt
CO2e)

“+51% of global electricity consumption

“*a significant amount of F-gas emissions: up
to a third of all such emissions

“*app. one-third of black carbon emissions

“""\f" .‘.
{4 ’
\ ]
3CSEP \%




GHG Emissions [GtCO,eq/yr]
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Challenge #1
but if only direct emissions are reported,
buildings are insignificant

Electricity
an;:l Heat Production Energy
25% 1.4%
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24%
Indust
Buildings 1% o
6.4%
— Transport
Transport 49Gt Cozeq 0.3%
14% (2010)
Industry
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0
Other
Energy J
9.6% AFOLU
0.87%

Direct Emissions Indirect Emissions



Allocation of Electricity/Heat Generation Emissions to End-use
Sectors for 2010
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Source: Figure A.11.2



Historical development of emissions by

World by Sector [GtCO, eqlyr]
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Baseline Scenarios: Direct vs. Indirect Emission Accounting
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Importance of building sector emissions

“*In developed countries most future building
emissions can be affected by retrofits....

< ...while in developing countries through new
construction.
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Final Energy for SH&C and tloor area by
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Lesson #2: importance of retrofits

CENTER FOR CLIMATE CHANGE
AND SUSTAINABLE ENERGY PoLICY

’n devevop C ENT }'s“ l.JIE R SIY '.gh.emcv.ency
retrofiits are the key to a low-emission
buildiing future; while in developing
countries very high efficiency new
buildings (cooling!’).



2. Efficient buildings have a very high
mitigation potential

CENTER FOR CLIMATE CHANGE
AND SUSTAINABLE ENERGY PoLICY
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ARA4: The buildings sector offers the largest
low-cost potential in all world regions by

GtCOq-eqlyr
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Energy Demand Reduction Potential
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Thermal energy uses have the highest potential for
energy use reductions in the building sector

Building Final Energy Use [E)/yr]
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World tloor area World final thermal energy use
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3. They are among the most cost-
effective options to mitigate CC

CENTER FOR CLIMATE CHANGE
AND SUSTAINABLE ENERGY PoLICY

CENTRAL EUROPEAN UNIVERSITY




ARA4: The buildings sector offers the largest
low-cost potential in all world regions by

GtCOq-eqlyr
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Lesson #4: DURABILITY

Durability of (energy-efficient)
buildings and their components are
crucial in determining their mitigation
cost-effectiveness;
as welll as improve their mitigation
potential due to reduced embodied
emissions



Figure 9.14. Cost of
conserved energy as a
function of energy
performance
improvement
(kWh/m2/yr
difference to baseline) to
reach ‘Passive House’
or more stringent
performance levels, for
new
construction by different
building types and
climate zones in Europe
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Figure 9.15. Cost of
conserved carbon as a
function of specific
energy consumption for
selected
best practices shown in
Figure 9.14.
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Figure 9.16.
Cost of
conserved
energy as a
function
of energy
saving in
percent for
European
retrofitted
buildings by
building type
and climate
zones.
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4. In addition, they have high co-
benetfits

CENTRAL EUROPEAN UNIVERSITY

“Overall, the potential for co-benefits for energy
end-use measures outweigh the potential

for adverse side-effects, whereas the evidence
suggests this may not be the case for all energy

supply and AFOLU measures.” (SPM 4.1)



Co-benefits and adverse side-effects of
energy-efficient buildings

ce Table T5.3.

Fuel switching, RES

Health impact in residential buildings via

Reduced Urban

| via

_ . uB Qutdoor air pollution (r/h) Heat Island Effect
incorporation, green 4 Indoor air pollution (in DCs) (r/h) (UHI) (1/m)
meS, and ﬂthE'r. e Fuel poverty [rfh]  energy cost) “fITIlI
measures reducing J- Ecosystem impact (less outdoor air pollution) (r/h) :
emissions intensity [en/children
T Urban biodiversity (for green roofs) (m/m) cookstoves) (mjfh)

Retrafits of existing Health impact via Reduced UHI 5, efficient equipment) (m/fh) |,
buildi | J- Outdoor air pollution (r/h) (retrofits and k4 for housing due to the

Ul P INg3 I;E'g" ‘Tm Je Indoor air pollution (for efficient cookstoves) (r/h) | new exemplary )
root, passive solar, J-  Indoor environmental conditions {m/h) buildings) (1/m) .
Etc.] L Fuel poverty (r/h) rofits and exemplary new |
Exem plar',r new Insufficient ventilation (m;/m)
buildings J- Ecosystem impact (less outdoor air pollution) (r/h) jen and children

Efficient equipment

=

Water consumption and sewage production (1/1)

cookstoves) (m/h)

Behavioural changes
reducing energy
demand

Je

4

Health impact via less outdoor air pollution (r/h) &
improved indoor environmental conditions (m/h)

Ecosystem impact (less outdoor air pollution) {r/h)
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Further co-benefits, details

“*monetizable co-benefits alone are at least twice
the resulting operating cost savings.

“* Energy efficient buildings may result in
iIncreased productivity by 1-9% or even higher.

<+ Productivity gains can rank among the highest
value co-benefits when these are monetized,
esp. in countries with high labour costs

<+ Significant potential energy security gains:

] e.g. a CEU study found that deep retrofitting the
Hungarian building stock can save 39% of natural gas
iImports, and up to 59% of January imports (whe(y,o,..,.,‘,k
most vulnerable to supply disruptions) o¢

3CSEP




While opportunities are great, there is
also a substantial lock-in risk

CENTER FOR CLIMATE CHANGE
AND SUSTAINABLE ENERGY PoLICY

CENTRAL EUROPEAN UNIVERSITY

“Infrastructure developments and long-lived products that lock
societies into GHG-intensive emissions pathways may be
difficult or very costly to change, reinforcing the importance of
early action for ambitious mitigation” (SPM 4.2)



Lesson #4: need to go for the highest-
tech

Buildiing efﬁcvemy pmgmms and policies

need to be avovded Vt i betl.‘er to “‘waiit outt”

the opportunities for a deep, sSystemic retrofit
rather engage in a shallow one. Most

countries would need to revisit their support
schemes and policies around retrofiit!



Summary of lessons relevant for the PH

community 1.
“» External needs to improve

-l reporting achievements, costs, penetration to other communities
] e.g. the academic literature

“* Much stronger focus on very deep retrofits are needed in
developed countries (as opposed to just new)

“* In other areas, preventing the need for mechanical
cooling is essential.

<+ Bringing down the costs of deep retrofits through
experience is crucial

‘\""\f" .‘.
/4 ’
\ ]
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Increasing urban density is a necessary but not sufficient

condition for lowering urban emissions

Working Group Il contribution to the IPCC Fifth Assessment Report

¢
4
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World tloor area World final thermal energy use
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Urban vs. Rural Energy Use
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Regions




C0O2 emissions

from space heating & cooling and water heating for key regions for all scenarios,
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Lock-in Effect

from space heating & cooling for Moderate Efficiency and Deep Efficiency
scenarios for key regions
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Final energy for space heating and cooling by
building type in Frozen Efficiency Scenario
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Final energy mitigation potential for Deep
Efficiency scenario between 2005 and 2050
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Final energy mitigation potential for Deep
Efficiency scenario between 2005 and 2050
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Final Energy for SH&C and tloor area by

building vintage. Deep Efficiency Scenario
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Final Energy for SH&C and floor area by
building vintage. Deep Efficiency Scenario
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High potentials for SH&C energy use reduction
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Longer periods offer higher savings

Final energy difference between year 2010 and 2030, % Final energy difference between year 2010 and 2050, %
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Climate Types

Il 1. Only Heating (very HHD)
M 2. Only Heating (HHD)

[13. Only Heating (MHD+LHD) =
I 4. Heating and Cooling (very HHD+LCD) % '
M 5. Heating and Cooling (HHD+MCD) -
[ 6. Heating and Cooling (HHD+LCD)
(
(

Il 7. Heating and Cooling (MHD+MCD)

[ 8. Heating and Cooling (MHD+LCD)

[ 9. Heating and Cooling (LHD+MCD)

[C110. Heating and Cooling (LHD+LCD)

Il 11. Only Cooling (very HCD)

Il 12. Only Cooling (HCD) -
[l 13. Only Cooling (LCD+MCD) !
M 14. Cooling and Dehum (very HCD)

[ 15. Cooling and Dehum (HCD)

[ 16. Cooling and Dehum (LCD+MCD)

Il 17. Heating, Cooling, Dehum
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Key Assumptions on Building Types

Buildings

Residential Commercial Residential m

Hotels & Hotels &
restaurants SF restaurants
Educational Educational

Others
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Global Buildings Energy Demand [EJ/yr]
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Substantial reductions in emissions would require large
changes in investment patterns.
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Cost of
conserved
carbon for
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energy
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post-ante
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Total Final Consumption [GJ/Capita]

Key Message 1: Urban areas are focal points of energy use
and CO, emissions

Urban energy use: 67-76%
Urban CO, emissions: 71-76%
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Presenter
Presentation Notes
Status quo: Geographically, urban areas are focal points of energy use and emissions. This makes them interesting when looking at mitigation options. For this reason we had – for the first time – an own chapter in our report dedicated to human settlements, infrastructure and urban planning.

Slide Text: Data on energy use and emissions
Figure: Only figure in chapter showing energy consumption (there is no figure showing urban emissions). Figure shows that cities in non‐Annex I countries generally have higher levels of energy use compared to the national average, whereas cities in Annex I countries generally have lower energy use per capita than national averages
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.

Window of opportunity in next two decades as large
portions of global urban areas have yet to be built

[Billion Persons]

today 2035
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Presenter
Presentation Notes
Trend 1: Urban areas are becoming even more relevant in the future as all expected global population growth will take place in urban areas and as with most urban structures yet to be build there is a great window of opportunity for mitigation: (1) Concerning the emissions during the building of those structures (mainly cement and steel) and (2) concerning the lock-in into either high or low emissions pathways determined by the urban form.
Trend 2: A further important trend (not depicted here) next to the increase of the number of people living in urban areas is the global (developed and developing countries) trend of urban population density decrease (i.e. sprawl) that leads to an increase in emissions.
It is helpful to distinguish between two types of emissions, emissions from construction and emissions from usage. Both will be greatly affected by which shape the new urban areas around the world – particularly in Asia where most will be build – will take.
The form of urban structures determine future energy use and – if done badly – can lead to lock-in in high-emissions pathways.

Background:
By 2050, the urban population is expected to increase to 5.6–7.1 billion, or 64–69% of world population.
Accounting for trends in declining population densities, and continued economic and population growth, urban land cover is projected to expand by 56–310% between 2000 and 2030.


Urban vs. Rural Energy Use
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