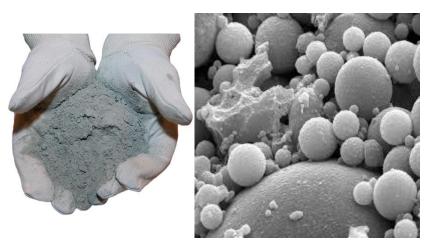
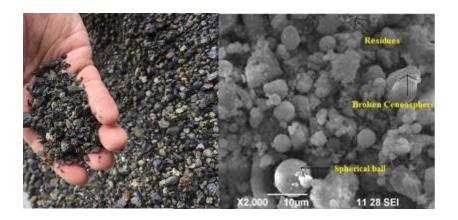


The use of Legacy Coal Ash in Road Construction

Date: 26 February 2025 Venue: DFFE Convention Centre Presenter: Kelley Reynolds-Clausen

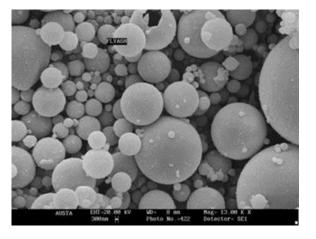
Coal Ash Generation





INTRODUCTION

- Grey powder formed by inorganic matter after combustion of coal.
- Fly ash
 - Small, fine particles (0.01-100µm diameter)
 - 85-90%
 - Spherical glass aluminosilicate
 - Captured by ESP or bag filters
- Coarse / Bottom ash
 - Heavier particles
 - 10-15%
 - Base of the boiler
 - Collected by submerged scraper conveyor
- Legacy ash
 - Combination of 80:20 Fly ash : Bottom ash
 - Weathered
 - Reactive
 - Vast volumes



INTRODUCTION

- Obtains physical and mineralogical properties from
 - Sub-bituminous parent coal
 - Combustion conditions
 - Temperature
 - Air : fuel
 - Milling
 - Rate of combustion
 - Emission control techniques
 - Climate
- Classified as Class C (W) (calcareous) or Class F (V) (silaceous) ashes
- Eskom ash is unique worldwide
 - Size and pressure of the boilers (combustion techniques)
 - Poor quality coal used
 - Ash
 - Highly alkaline, Low sulphur, Low carbon, Pozzolanic
- Beneficiation relies on one or more of the properties
 - Spherical shape, pH, Pozzolanicity, Variety of particle sizes

Properties	Fly Ash Classes	
Silicon dioxide, aluminium oxide, iron oxide	Class F	Class C
$(SiO_2 + AI_2O_3 + Fe_2O_3)$, min, wt. %	70,0	50,0
Sulphur trioxide (SO ₃), max, wt. %	5,0	5,0
Moisture content, max, wt. %	3,0	3,0
Loss on ignition, max, wt. %	6,0	6,0

Coal Ash Generation

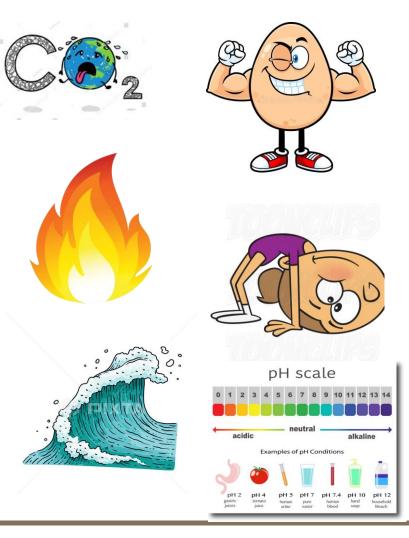
Context

- Eskom produces approximately 34 million tons of coal ash annually.
- Currently, only 7% to 10% of this ash is sold through off-takers.
- Ash handling cost estimated to be **R680 million annually**, based on a cost of R20 per ton.
- This initiative offers a **cost benefit within 100km of the power plants**.
- Thus, any road upgrade in this region could result in a significant cost reductions by means of:
 - Minimised material costs only logistics
 - A more durable road.
 - Environmentally safe and green methodology
 - Reduce the environmental impacts of the ash

facilities in the region.

- 1990-1995 Ash Utilisation research
 - Ash in Forestry
 - N-Viro Soil.
 - Controlled Low Strength Materials
- 2003 Change in legislation to make ash a hazardous waste.
 - All utilisation research stopped
 - Ash Applications research initiated to understand ash holding facilities
 - Ash Salt Capacity
 - Coring for chemical, geohydrological and microbiological analysis
- 2014 Mpumalanga government tasks Eskom and Sasol to investigate ash beneficiation for social upliftment and job creation.

History



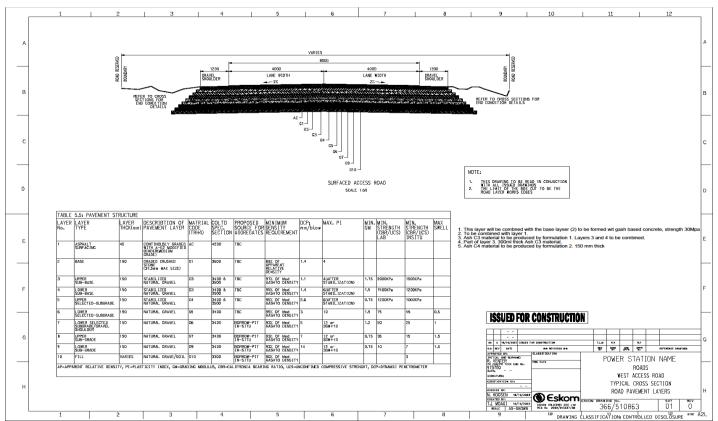
- 2015 Eskom ERI established Ash Task Team.
 - Identify gaps in Eskom technical knowledge of ash.
 - Initiate research to close the gaps and use info for legislation change.
 - Identify other stumbling blocks for ash beneficiation
 - Legislation waste management license
 - Attempts to change legislation
 - Section 74
 - Regulation 9.
- 2018 Ash Exclusions Regulations promulgated.
 - Beneficiated ash no longer subject to waste legislation
 - Eskom ashes and FGD gypsum approved for use in
 - Road Construction
 - Mine Backfilling
 - Cement and Block manufacture
 - Soil Amelioration
 - Encapsulation technologies
- 2019 present
 - Several research projects
 - Consider use on dumped ashes only.

Why Coal ash geopolymer concrete materials?

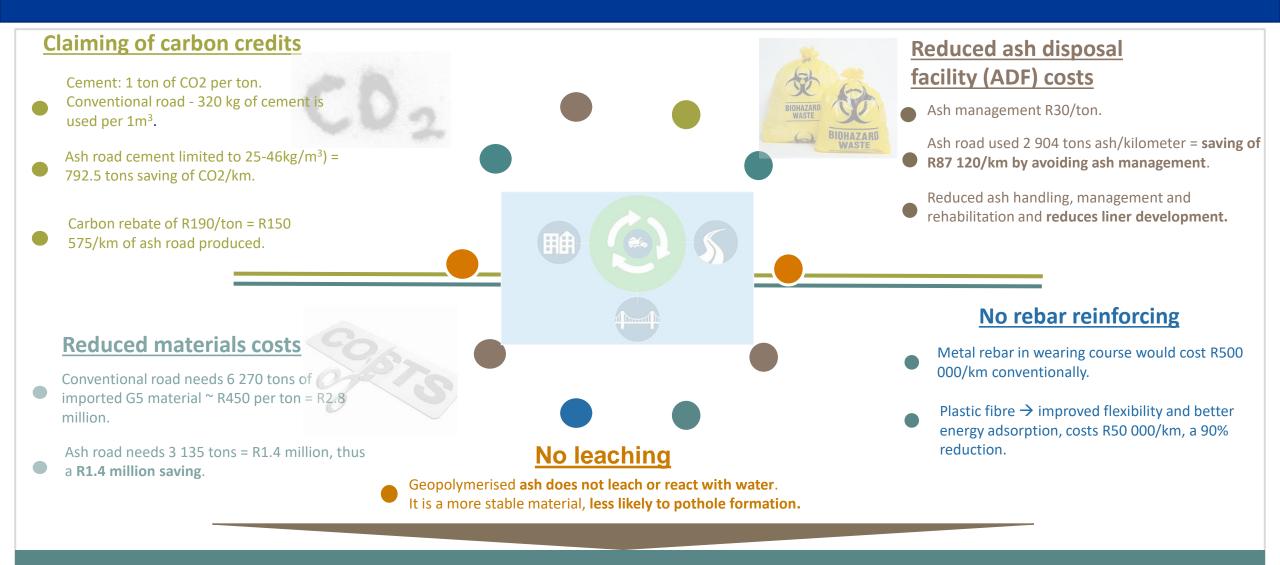
- Fly ash and slag inexpensive raw material (wastes)
- High Silica (40 60%) and aluminium contents (20 30%)
- Low calcium, sulphur, carbon (unburnt coal) and iron concentrations
- Environmentally friendly No CO₂ emissions
- Considered user friendly new activators
 - Conventional activators hazardous, toxic and corrosive
- Can cure at a wide range of temperatures.
- Various strengths and flexibilities.
- Better heat resistance no hydrates in structure.
- Resistant to corrosion from saline, acidic or alkaline environments - attributed to the lack of calcium in their structure.

Conventional Road Construction

- Utilise virgin aggregate (rock) material to develop the support layers.
- Material is obtained from borrow pits in the area around the road construction.
- The materials, placed in reducing size are processed and stabilised with conventional cement.
- Metal rebar reinforcing is used.
- The top layer is bitumen as a wearing course.
- Portland cement is used for material stabilisation CO₂ producer.



Geopolymer Ash Road


- Pilot demonstration project Kusile Power Station 2 x 500m x 8m wide roads.
- Utilise legacy coal ash in the base and sub-base; C4 and C3 engineered stabilised layers.
- Reduction of cost of materials
- No use of mined virgin materials.
- Legacy Ash
- Slag
- Activators
- Aggregate
- Water from site
- 34MPa after 7 days
- Reinforcing plastic fibre.

Potential impact

Eskom

Geopolymer Ash Road – Initial pavement works

Geopolymer Ash Road Construction (engineered layers)



- Pilot demonstration project Kusile Power Station 2 x 500m x 8m wide roads.
- Utilise legacy coal ash and G5 material (50:50) in the base and sub-base; C4 (CLA 4) and C3 (CLA 3) engineered stabilised layers.
- Reduction of cost of materials
- Reduced use of mined virgin materials.

Benefits of the geopolymer ash road to Eskom

- Reduced cost of construction materials.
- Reduction of ash management costs and rehabilitation.
- Can use waste-water in the construction.
- Reduced use of Cement allows for the claiming of carbon credits.
- Utilise 840 tons of legacy ash per 150mm layer of C3/C4 per kilometer.
- 50:50 ratio of ash to G5 material only due to criticality of the road will optimise the use of ash in further research.

Comple

Geopolymer Ash Road Construction (wearing course)

Eskom

- Pilot demonstration project Kusile Power Station 2 x 500m x 8m wide roads.
- Utilise legacy coal ash and metal processing waste (slag) to form a 30MPa ash concrete for the top wearing course.
- Reduction of cost of materials.
- No cement use.

- Can use waste-water in the ash concrete batching.
- Reduced use of Portland cement allows for the claiming of carbon credits.
- Utilise 384 tons of legacy ash per 150mm layer per kilometer in the wearing course.

Road Construction – Final product

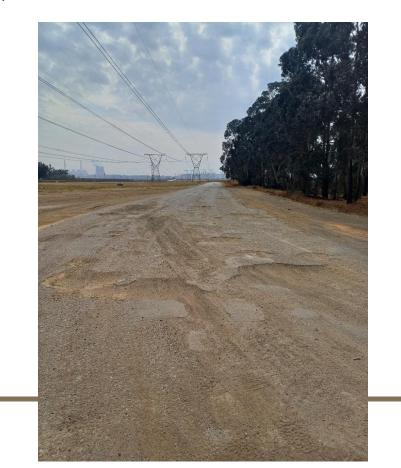
Road Official Opening – 26 September 2024

Next steps and high level milestones

Eskom's next steps & the year

- Conduct a **business case comparison of costs for the Matla – Kriel road**, with the intent to increase the ash content in the various layers.
- Assist in JET initiatives and Air Quality offsets.

Civil Engineering have accepted the process and incorporation into Eskom specifications.



Next Steps

- Ash Based Rehabilitation of the Matla Kriel connecting road.
 - Using Matla legacy ash
 - Dumped slag
 - Activators (South African environmentally friendly)
 - Wastewater (pollution control dam)

THANK-YOU

Questions?

Kelley Reynolds-Clausen <u>Reynolka@eskom.co.za</u> 082 880 5642