Systematic protected area planning for the forest biome:Implications for PFM

Derek Berliner Grant Benn (GISCO) Tom Voster (DWAF) Izak Van der Merwer (DWAF) Paddy Abott (DFID)

Supported by DFID

Outline

- Introduction (Objectives & biological /socio-econ context)
- What is systematic conservation planning?
- Project approach and methodology/Tools
- Project outputs
- Implications for PFM
- Computer demonstrations
- Questions, discussion and way forward

Project purpose

Primary

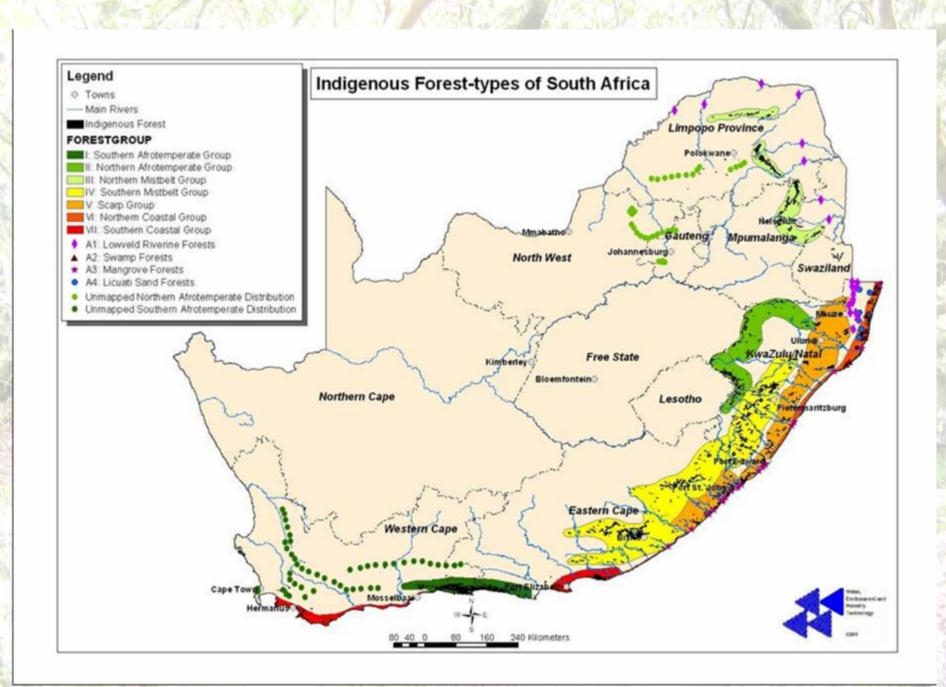
Using a systemic conservation planning approach, select and design a protected area network that is representative of forest biome biodiversity, and that will enable its long-term persistence.

Secondary

Develop an objective method to classify forest areas into suitable protected area categories that will provide equitable sharing and sustainable use of forest products, while ensuring persistence of biodiversity

Project outputs

Provide forest management authorities with decision support regarding:


- relative conservation values
- relative threats to forest patches
- priority areas (hotspot analysis)
- relative socio economic value of forest patches (subsistence value, cultural/historical value)
- socio-economic context of forest patches
- appropriate (IUCN) protected area categories for forest patches

Context: Biological

- Forests form the smallest; most widely distributed and most fragmented biome in southern Africa, covering only about 0.3% of the land surface
- Second highest species density per unit area of biome (A disproportionate percentage of these species are also rare or endangered).

Context: Biological

- Many forest under threat from mining, non sustainable subsistence use of forest products, forest clearing for agriculture etc.
- Twenty four different forest types identified in objective classification (basis for determining 'conservation value')

Context: Socio-economic & policy

- High poverty levels (and subsistence resource dependence) of populations living around forest
- Forest often play an important part in the local socio-economy and culture
- NFA (No. 84 of 1998) emphasizes sustainable use and benefit sharing
- Of the c. 1500 SFAs, only 17 have been given a protected area category (16 Nature Reserves, 1 Wilderness Area).

Context: Socio-economic & policy

- The old system of protected state forest areas is now out-dated, and, given the new dispensation of DWAF to work together with forest stake-holders to plan and manage indigenous forests, a new approach is needed that will:
 - Increase effectiveness of a protected area system
 - Contribute toward socio -economic upliftment & benefit sharing

What methods or conceptual tools can be used to assist with achieving these two aims?

Increase effectiveness of a protected area system for forests

Make forests contribute toward socio economic upliftment & benefit sharing

Tools

- 1. Systematic protected area planning
- 2. A protected area classification system for forest

What is systematic protected area planning?

"The world over, our protected area systems are biased – they do not conserve a representative sample of biodiversity and they exclude key ecological processes."

Systematic conservation planning is not.....

'add hock' planning

Systematic conservation planning..... Identifies priority areas for biodiversity conservation, taking into account patterns of

biodiversity (the principle of <u>representation</u>) and the ecological and evolutionary processes that sustain them (the principle of <u>persistence</u>).

Two key elements

<u>Representivity:</u> *sample* of all biodiversity species and habitats

Persistence

the ecological and evolutionary processes that allow this biodiversity to persist over time.

Recent trends focus on:

efficiency and optimization of the PA net work

Optimization

Maximum returns on investment: biodiversity gains *and* socioeconomic upliftment (GEF/World Bank) "Ultimately optimization of PA network requires the achievement of biodiversity targets while <u>minimizing socio-economic</u> opportunity costs"

2nd tool: Protected area classification system

Three protected area classification systems:

- NFA (three types: Nature reserve, wilderness area, 'other'
- 2) NEMA (six categories, no clear guidelines)
- 3) IUCN classification system (internationally recognized, most comprehensive)

IUCN Protected Area categories

IUCN	Name	Prime objective	
Category			
1a	Scientific	Scientific research	
A is	reserve		
1b	Wilderness	Wilderness	
AV STEN	area	protection	
П	National park	Biodiversity	
		cons/tourism	
II	Natural	Protection of	
	monument	natural/cultural	
	S I LOW	features	
IV	Habitat/species	Rare species/habitat	
1.4. 19	management	18 1 Sec. 38.77	
Veter	Protected	Maintain	
	landscape	cultural/traditional	
- All section		attributes	
VI	Multiple	Sustainable use of	
14/14	resource use	natural	
a frank	area	resources/ecosystem	

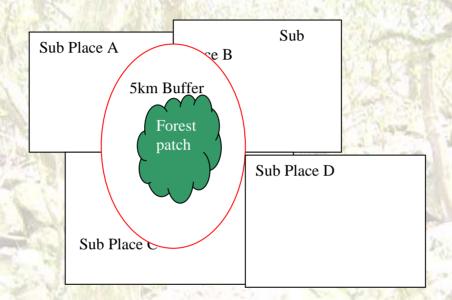
IUCN protected area categories and key selection criteria

IUCN Category	Name	Level of human influence/ strict protection	Level of use	'Conservation value'	Livelihood value
1 a	Scientific reserve	High	Low	+++	0
1b	Wilderness area			++	0
II	National park		100	+++. 000 10	Low
Ш	Natural monument	10	1000	+	?
IV	Habitat/species management	De Cart	di ter	++	Low
V	Protected landscape	12		+	High
VI	Multiple resource use area	Low	▼ High	+	Very high

Methodology and approach

- Indicators
- GIS spatial data sets
- Rule based modeling (expert systems), linked to GIS

Indicator based modeling approach


•Indicators of conservation value (irreplacability)

- •Socio-economic indicators (National census)
- •Use of rule-based modeling to derive Composite indicators

Irreplacability values/map

- Index of 'conservation value"
- Probability that a forest patch (will be needed to achieve conservation targets)
- Map of options (100% irreplacability implies no option)

Incorporating socio-economic spatial data into design

Approach : GIS analysis of national census data using proportional averaging to enable inheritance of enumerator/Sub Place data within 5km forest buffer

Integrating socio-economic data

Within 5 km forest buffer areas Indicators of :

- Population density
- poverty level
- •Fuel wood use (households)
- •Forest accessibility

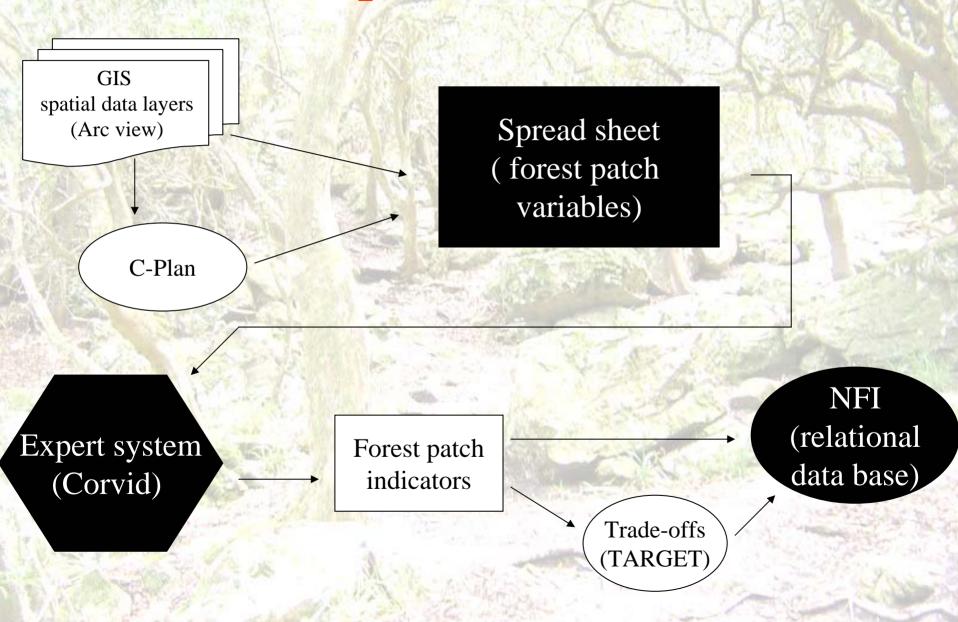
Enables approximation of subsistence/livelihood value of forest patches

Opportunity costs (used in trade-off analysis biodiversity gains vs socio-economic loss)

Using rule based models to derive indices

IF [fuel wood demand] is HIGH AND [Accessibility] is HIGH

Then [subsistence resource use pressure index] is HIGH


Selecting Priority Conservation Areas

Irreplacability

Threat (vulnerability)

Computer tools used

Some potential implications for for PFM

- Indicators of socio-economic and conservation value of forest used to identify 'hotspot' areas
- •Use of protected area classifications assist with guiding sustainable utilization/CBNRM projects (IUCN V, V1)
- •National and systematic level approach to strategic implementation
- •Application/adaptation of tools and products: (Irreplacability, GIS maps, Expert systems, data base)

DATA BASE : Example

- Grootbosch forest (Tzaneen)
- Forest ID number 3310