

NCCRRD

SA National Energy Development Institute GREEN TRANSPORT

Carel Snyman carels@sanedi.org.za

Energy Requirements for City (Stop and Go) Driving

Click on blue text for more information.

Engine Losses 74% - 75% thermal, such as radiator, exhaust heat, etc. (63% - 64%) combustion (3%) pumping (5%) friction (3%) Parasitic Losses: 6% - 7% (e.g., water pump, alternator, etc.) Power to Wheels: 14% - 16% Drivetrain Losses: 4% - 5% Dissipated as wind resistance: (4%) rolling resistance (4% - 5%) braking (6% - 7%) Idle Losses: 6%

In this figure, they are accounted for as part of the engine and parasitic losses.

Cost, Energy and Pollution

For	Petrol	Electric Car	
100km:	Car	Normal	Off-peak & Small Car
Price/Unit	R 14,00	R 1,33	60c
Units	10 litres	15 kWh	5 kWh
Energy	320 MJ	54 MJ	27 MJ
Cost	R 140,00	R 20,00	R3,00
GWP	45kg	39kg	13kg

Well to Wheel GHG emissions in gCO₂eq./km

* reference vehicle: gasoline engine (induction enginge), consumption 7 l per 100 km

Kilometres per Hectare

Home & eCommuter

	For Every Day		
Appliance	Wh/d	MJ/d	Cost
Kitchen	8'577	31	R 8,58
Rest	7'720	28	R 7,72
Outside	2'780	10	R 2,78
Total	19kWh	69	R 25
	Use of petrol or electricity	MJ/d	Cost
pCar 9L/100km	7,2 L 80km/day	205	R 100 R14/L
eCar 15kWh/100km	12 kWh ^{80km/day}	43	R 16 R1,33/kWh
eCom 5kWh/100km	4 kWh 80km/day	14	R 5 R1,33/kWh

Energy from the SUN

- Average = 80km per day
- Small electric commuter: 5kWh/100km = 4kWh/day
- PV electrical energy
 - 5kWh per day
 - 1kW array = 5 x 200W panels
 - 10m²
- PV cells cost R30'000,
 - once-off, for 25 years
- PV life = 500'000km
- 6c/km (no increase!)

Energy in Perspective

TW.yrs

Comparing finite and renewale planetary energy reserves)Terawatt-years). Total recoverable reserves are shown for the finate resources.