## mitigationREPORT

SOUTH AFRICA'S GREENHOUSE GAS MITIGATION POTENTIAL ANALYSIS







On behalf of:

Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety

of the Federal Republic of Germany

# mitigation

SOUTH AFRICA'S GREENHOUSE GAS MITIGATION POTENTIAL ANALYSIS

The following citation should be used for this report:

Department of Environmental Affairs, 2014: South Africa's Greenhouse Gas (GHG) Mitigation Potential Analysis. Pretoria, Department of Environmental Affairs.

The suite of reports that make up South Africa's Greenhouse Gas (GHG) Mitigation Potential Analysis include the following:

Technical Summary

#### **Main Report**

Technical Appendices:

Appendix A: Approach and Methodology

Appendix B: Macroeconomic Modelling

Appendix C: Energy Sector

Appendix D: Industry Sector

Appendix E:Transport Sector

Appendix F: Waste Sector

Appendix G: Agriculture, Forestry and Other Land Use Sector

## List of Abbreviations

| Acronym           | Definition                                                   |
|-------------------|--------------------------------------------------------------|
| AD                | anaerobic digestion                                          |
| AFOLU             | agriculture, forestry and other land use                     |
| BAT               | best available technologies                                  |
| BAU               | business as usual                                            |
| BF                | blast furnace                                                |
| BFAP              | Bureau for Food and Agricultural Policy                      |
| BOD               | biological oxygen demand                                     |
| BOF               | basic oxygen furnace                                         |
| Capex             | capital expenditure                                          |
| ССС               | (UK) Committee on Climate Change                             |
| CCGT              | combined cycle gas turbine                                   |
| CCS               | carbon capture and storage                                   |
| CDM               | Clean Development Mechanism                                  |
| CER               | certified emissions reduction                                |
| CGE               | computable general equilibrium                               |
| CH₄               | methane                                                      |
| CHP               | combined heat and power                                      |
| CNG               | compressed natural gas                                       |
| со                | carbon monoxide                                              |
| CO2               | carbon dioxide                                               |
| CO <sub>2</sub> e | carbon dioxide equivalent                                    |
| CoGTA             | Department of Cooperative Governance and Traditional Affairs |
| CSP               | concentrated solar power                                     |
| CTL               | coal to liquid                                               |
| DAFF              | Department of Agriculture, Forestry and Fisheries            |
| DBSA              | Development Bank of Southern Africa                          |
| DEA               | Department of Environmental Affairs                          |
| DERO              | desired emission reduction outcome                           |
| DME               | Department of Minerals and Energy                            |
| DoE               | Department of Energy                                         |
| DRI               | direct reduced iron                                          |
| Dti               | Department of Trade and Industry                             |
| EAC               | equivalent annual cost                                       |

| Acronym             | Definition                                              |
|---------------------|---------------------------------------------------------|
| EAF                 | electric arc furnace                                    |
| EDD                 | Economic Development Department                         |
| EFOM                | energy flow optimisation                                |
| EfVV                | energy from waste                                       |
| EMU                 | electric multiple unit (train set)                      |
| EPA                 | United States Environmental Protection Agency           |
| ERC                 | Energy Research Centre, University of Cape Town         |
| EV                  | electric vehicle                                        |
| FCEV                | fuel cell electric vehicle                              |
| FL                  | fluorescent lamp                                        |
| GDP                 | gross domestic product                                  |
| Gg/yr               | gigagrams per year                                      |
| GHG                 | greenhouse gas                                          |
| GHGI                | National Greenhouse Gas Inventory                       |
| GJ                  | gigajoule                                               |
| GVA                 | gross value added                                       |
| GW                  | gigawatt                                                |
| GWC                 | growth without constraint                               |
| GWh                 | gigawatt hour                                           |
| GWP                 | global warming potential                                |
| HCV                 | heavy commercial vehicle                                |
| HFC                 | hydrofluorocarbon                                       |
| HVAC                | heating, ventilation and air conditioning               |
| HYL                 | gas-based direct reduced iron (DRI) steelmaking process |
| ICAO                | International Civil Aviation Organisation               |
| IEA                 | International Energy Agency                             |
| IEP                 | Integrated Energy Plan                                  |
| INFORUM             | Inter-industry Forecasting Model                        |
| I-O                 | input-output                                            |
| IPCC                | Intergovernmental Panel on Climate Change               |
| IRP                 | Integrated Resource Plan                                |
| JRC                 | Joint Research Centre                                   |
| ktCO <sub>2</sub> e | kilotonnes of carbon dioxide equivalent                 |
| kW                  | kilowatt                                                |
| kWh                 | kilowatt hour                                           |

## mitigation REPORT

| Acronym             | Definition                                               |
|---------------------|----------------------------------------------------------|
| LCV                 | light commercial vehicle                                 |
| LFG                 | landfill gas                                             |
| LNG                 | liquefied natural gas                                    |
| LPG                 | liquefied petroleum gas                                  |
| LRMC                | long run marginal costs                                  |
| LTMS                | long-term mitigation scenarios                           |
| MAC                 | marginal abatement cost                                  |
| MACC                | marginal abatement cost curve                            |
| MANBC               | marginal abatement net benefit curve                     |
| MARKAL              | market allocation                                        |
| MBT                 | minibus taxi                                             |
| MCA                 | multi-criteria decision analysis                         |
| MCV                 | manufacturing commercial vehicle                         |
| MIA                 | macroeconomic impact                                     |
| MJ                  | megajoule                                                |
| MSFM                | municipal services financial modelling                   |
| MSW                 | municipal solid waste                                    |
| Mt                  | million tonnes (megatonnes)                              |
| MtCO <sub>2</sub> e | million tonnes (megatonnes) of carbon dioxide equivalent |
| MW                  | megawatt                                                 |
| MWh                 | megawatt hour                                            |
| N <sub>2</sub> O    | nitrous oxide                                            |
| NAC                 | net annualised cost                                      |
| NCCRP               | National Climate Change Response Policy                  |
| NDP                 | National Development Plan                                |
| NERSA               | National Energy Regulator of South Africa                |
| NGP                 | New Growth Path                                          |
| NPC                 | National Planning Commission                             |
| NPV                 | net present value                                        |
| NT                  | National Treasury                                        |
| OCGT                | open cycle gas turbine                                   |
| OECD                | Organisation for Economic Co-operation and Development   |
| Opex                | operating expense / operational expenditure              |
| PFRK                | parallel flow regenerative kiln                          |
| PHEV                | plug-in hybrid electric vehicle                          |

| Acronym         | Definition                                                                     |
|-----------------|--------------------------------------------------------------------------------|
| PPD             | Peak, Plateau and Decline (trajectory)                                         |
| PRASA           | Passenger Rail Association of South Africa                                     |
| PV              | photovoltaic                                                                   |
| RBS             | required by science (scenario)                                                 |
| RFG             | refinery fuel gas                                                              |
| RHE             | rural high income electrified                                                  |
| RLE             | rural low income electrified                                                   |
| RLN             | rural low income non-electrified                                               |
| SAM             | social accounting matrix                                                       |
| SARB            | South African Reserve Bank                                                     |
| SATIM           | South African TIMES model                                                      |
| SF <sub>6</sub> | sulphur hexafluoride                                                           |
| SRMC            | short run marginal costs                                                       |
| Stats SA        | Statistics South Africa                                                        |
| SULTAN          | sustainable transport illustrative scenario accounting tool                    |
| SUV             | sports utility vehicle                                                         |
| SWH             | solar water heating                                                            |
| TIMES           | The Integrated MARKAL-EFOM System                                              |
| TMP             | total mitigation potential                                                     |
| TWG-M           | Technical Working Group on Mitigation                                          |
| UHE             | urban high income electrified                                                  |
| ULCORED         | gas-based direct reduced iron (DRI) steelmaking process (not yet in operation) |
| ULE             | urban low income electrified                                                   |
| ULN             | urban low income non-electrified                                               |
| UNFCCC          | United Nations Framework Convention on Climate Change                          |
| Vkm             | vehicle kilometres                                                             |
| VSD             | variable speed drive                                                           |
| WAM             | 'with additional measures' scenario                                            |
| WEM             | 'with existing measures' scenario                                              |
| WOM             | 'without measures' scenario                                                    |
| WTO             | World Trade Organization                                                       |
| WTT             | well to tank (indirect emissions)                                              |
| WTW             | well to wheel (life cycle emissions)                                           |
| ZAR (R)         | South African rand                                                             |

## Glossary

| Term                                             | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Abatement                                        | Actions taken to reduce GHG emissions (see <i>Mitigation</i> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Abatement pathway                                | An abatement pathway defines a set of emission reduction trajectories (pathways) which are technologically achievable over time. The pathway merely identifies what is technically possible without providing a detailed scenario-based description of how that outcome would be achieved.                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Carbon dioxide<br>equivalent (CO <sub>2</sub> e) | The universal unit of measurement used to indicate the global warming potential (GWP) of each of the six Kyoto greenhouse gases. It is used to evaluate the impacts of releasing (or avoiding the release of) different greenhouse gases.                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Carbon intensity                                 | The amount of emissions of $\rm{CO}_2$ per unit of GDP. Carbon intensity can also be expressed on a per capita basis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Climate change                                   | A change of climate which is attributed directly or indirectly to human activity that alters the composition of the global atmosphere and which is in addition to natural climate variability over comparable time periods (Source: United Nations Framework Convention on Climate Change - UNFCCC).                                                                                                                                                                                                                                                                                                                                                                                                                  |
| DERO                                             | Desired emission reduction outcomes (DEA, 2011a).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Direct emissions                                 | Emissions that are produced by organisation-owned equipment or emissions from organisation-<br>owned premises, such as carbon dioxide from electricity generators, gas boilers and vehicles, or<br>methane from landfill sites.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Emission reduction<br>scenario                   | Scenario describing plausible future emission trajectories to reflect the likely quantity and trend<br>of greenhouse gas emissions released for a given period, including variances related to levels of<br>economic growth, the structural makeup of an economy, demographic development and the<br>effect of emission reduction policies.                                                                                                                                                                                                                                                                                                                                                                           |
| Emissions sink                                   | Any process, activity or mechanism that removes a greenhouse gas from the atmosphere.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Emissions source                                 | Any process, activity or mechanism that releases a greenhouse gas, an aerosol or a precursor of a greenhouse or aerosol into the atmosphere. Only greenhouse gases are considered for the purposes of this study.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Emissions trajectory                             | Future greenhouse gas emissions are the product of complex dynamic systems, determined by driving forces such as demographic development, socio-economic development and technological change.<br>Emission trajectories are alternative computations of the likely quantity and trend of greenhouse gas emissions released for a given period, including variances related to levels of economic growth, the structural makeup of an economy, demographic development and the effect of emission reduction policies.                                                                                                                                                                                                  |
| Greenhouse gas                                   | Greenhouse gases (GHGs) are those gaseous constituents of the atmosphere, both natural and anthropogenic, that absorb and emit radiation at specific wavelengths within the spectrum of infrared radiation emitted by the Earth's surface, the atmosphere and clouds. This property causes the greenhouse effect. Water vapour ( $H_2O$ ), carbon dioxide ( $CO_2$ ), nitrous oxide ( $N_2O$ ), methane ( $CH_4$ ) and ozone ( $O_3$ ) are the primary greenhouse gases in the Earth's atmosphere. Besides carbon dioxide, nitrous oxide and methane, the Kyoto Protocol deals with the greenhouse gases sulphur hexafluoride (SF <sub>6</sub> ), hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs) (IPCC, 2007). |
| Greenhouse gas sink                              | A sink is defined as any process, activity or mechanism that removes a GHG from the atmosphere (IPCC, 2007).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Greenhouse gas source                            | A source is defined as any process, activity or mechanism that releases a GHG, an aerosol or a precursor of a GHG or aerosol into the atmosphere. In this study, only South African sources of GHG emissions have been considered (IPCC, 2007).                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

| Term                                          | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Indirect emissions                            | Emissions that are a consequence of the activities of the reporting company but occur from sources owned or controlled by another organisation or individual. They include all outsourced power generation (for example, electricity, hot water), outsourced services (for example, waste disposal, business travel, transport of company-owned goods) and outsourced manufacturing processes. Indirect emissions also cover the activities of franchised companies and the emissions associated with downstream and/or upstream manufacture, transport and disposal of products used by the organisation, referred to as product life cycle emissions. |
|                                               | An energy planning document managed by the Department of Energy that provides overall national energy sector guidance and macro-planning.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Integrated Energy Plan<br>(IEP)               | An IEP considers the appropriate balance between demand and supply options for providing<br>the requisite energy services in South Africa, based on the inclusion and consideration of all fuel<br>types and energy carriers. Normally it covers a twenty year planning period and has the overall<br>objective of balancing energy supply and demand with resources, in concert with safety, health<br>and environmental issues.                                                                                                                                                                                                                       |
|                                               | South Africa's Integrated Resource Plan for Electricity (DoE, 2011), published as a notice under the Electricity Regulation Act (No. 4 of 2006), is a planning framework for managing electricity demand in South Africa for the period 2010 to 2030.                                                                                                                                                                                                                                                                                                                                                                                                   |
| Integrated Resource Plan<br>(IRP)             | The Integrated Resource Plan (IRP) 2010 assesses a range of potential scenarios to deliver the country's future electricity demand, based on an assumed average economic growth of 4.6% for the period. The IRP estimates that electricity demand by 2030 will require an increase in new generation capacity of 52 248MW. This substantial increase in capacity is required to address projected demand, the decommissioning of a number of existing power stations (commencing from 2022 onwards), and the need to provide for an adequate electricity reserve margin.                                                                                |
| Marginal abatement cost<br>curve (MACC)       | A marginal abatement cost curve (MACC) shows the costs and potential for emissions reduction from different measures or technologies, ranking these from the cheapest to the most expensive to represent the costs of achieving incremental levels of emissions reduction.                                                                                                                                                                                                                                                                                                                                                                              |
| Mitigation measures                           | Typically, mitigation measures are technologies (that is, a piece of equipment or a technique<br>for performing a particular activity), processes, and practices which, if employed, would reduce<br>GHG emissions below anticipated future levels, when compared to the status quo or existing<br>counterfactual techniques normally employed.                                                                                                                                                                                                                                                                                                         |
| Mitigation opportunity                        | An anthropogenic intervention to reduce the sources or enhance the sinks of greenhouse gases.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Mitigation potential                          | The mitigation potential of a measure is the quantified amount of GHGs that can be reduced, measured against a baseline (or reference). The baseline (or reference) is any datum against which change is measured. Mitigation potential is represented in tonnes of carbon dioxide equivalent $(tCO_2e)$ .                                                                                                                                                                                                                                                                                                                                              |
| New Growth Path<br>(NGP)                      | The New Growth Path (NGP), released in November 2010, represents government's new<br>'framework for economic policy and the driver of the country's jobs strategy'. The NGP prioritises<br>job creation in all economic policies and outlines strategies to enable South Africa to develop in<br>an equitable and inclusive manner. A particular focus is placed on investment in infrastructure and<br>skills development.<br>The NGP's priority sectors are manufacturing; mining and beneficiation; agriculture, rural<br>development and agro-processing; infrastructure development; tourism; the creative industries;                             |
|                                               | and certain high-level business services. The NGP targets 5 million new jobs by 2020.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Peak, Plateau and Decline<br>(PPD) trajectory | South Africa's benchmark national GHG emissions trajectory range. According to the Peak,<br>Plateau and Decline (PPD) emissions trajectory, South Africa's long-term mitigation strategy calls<br>for the carbon emissions trajectory to peak between 2020 and 2025, plateau for approximately a<br>decade and decline in absolute terms thereafter (DEA, 2011a).                                                                                                                                                                                                                                                                                       |

## mitigation REPORT

| Term                                             | Definition                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Projection                                       | In general usage, a projection can be regarded as any description of the future and the pathway leading to it.                                                                                                                                                                                                                                                                                                                  |
| Scenario                                         | A scenario is a coherent, internally consistent and plausible description of a possible future state<br>of the world. It is not a forecast; rather, each scenario is one alternative image of how the future<br>may unfold. A projection may serve as the raw material for a scenario, but scenarios often require<br>additional information (for example, about baseline conditions).                                          |
| Technical mitigation potential                   | Technical mitigation potential is the amount by which it is possible to reduce GHG emissions<br>or improve energy efficiency by implementing a technology or practice that has already been<br>demonstrated. In some cases implicit economic considerations are taken into account (IPCC, 2007).                                                                                                                                |
| Technical Working Group<br>on Mitigation (TWG-M) | In order to develop the mitigation approaches set out in the National Climate Change Response<br>Policy, the Department of Environmental Affairs established a Technical Working Group on<br>Mitigation. The purpose of the TWG-M was to provide technical inputs and support identification<br>of mitigation options, as well as to assist the DEA to coordinate and align mitigation work at<br>sectoral and national levels. |

#### **Acknowledgements**

The South African Greenhouse Gas Mitigation Potential Analysis was supported by the Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ), on behalf of the Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety (BMUB) of the Federal Republic of Germany.

The analysis was conducted by Camco Clean Energy, in partnership with Ricardo-AEA, PDG and Conningarth Economists.

The project team acknowledges the support of Dr Bruno Merven and Dr Andrew Marquard, both of the Energy Research Centre of the University of Cape Town, for providing updated energy price projections based on the South African TIMES model (SATIM).

## Table of Contents

| List of | fAbbreviations                                                                                         | iii    |
|---------|--------------------------------------------------------------------------------------------------------|--------|
| Glossa  | ary                                                                                                    | vii    |
| Ackno   | owledgements                                                                                           | ix     |
| Execu   | utive Summary                                                                                          | xvii   |
| Char    | pter I: Introduction                                                                                   |        |
|         | Background                                                                                             |        |
|         | The National Climate Change Response Policy                                                            |        |
| 2.      | 2.1. Approach to Mitigation                                                                            |        |
|         | 2.2. The Technical Working Group on Mitigation                                                         |        |
|         | 2.3. Sector Task Teams                                                                                 |        |
| 3.      | The Long Term Mitigation Scenarios Study                                                               | 2      |
|         | 3.1. The LTMS Scenario Framework                                                                       |        |
|         | 3.2. Differences Between the LTMS Study and the Current Greenhouse Gas Mitigation Potential Analysis S | tudy 5 |
| 4.      | Study Objectives                                                                                       | 6      |
| 5.      | Sectors Covered in this Report                                                                         | 6      |
| 6.      | Report Structure                                                                                       | 7      |
| Char    | pter II: Reference Case Projections                                                                    | 8      |
|         |                                                                                                        |        |
| 7.      | Projecting Economic Growth<br>7.1. The Inter-Industry Forecasting Model                                |        |
|         | <ul><li>7.2. Underlying Assumptions for the Purposes of Forecasting</li></ul>                          |        |
| 8.      | Building Reference Case Projections                                                                    |        |
|         | 8.1. Emissions with No Mitigation                                                                      |        |
|         | 8.2. Emissions with existing measures Only                                                             |        |
| 9.      | Sensitivity Analysis                                                                                   | 17     |
| Chap    | pter III: Identification and Analysis of Mitigation Potential                                          | 20     |
| 10.     | Identifying Mitigation Potential                                                                       |        |
|         | 10.1. Identification of Mitigation Measures                                                            |        |
|         | 10.2. Development of Marginal Abatement Cost Curves                                                    |        |
| 11.     | Quantifying Mitigation Potential                                                                       |        |
|         | II.I. Technical Mitigation Potential                                                                   |        |
|         | 11.2. Projecting Emissions with Additional Measures                                                    |        |
| 12.     | Developing Abatement Pathways                                                                          |        |
|         | 12.1. Defining Abatement Pathways                                                                      |        |
|         | 12.2. Approach to Developing Abatement Pathways                                                        |        |
|         | 12.3. Evaluating National Abatement Pathways                                                           |        |

| Cha  | pter IV: Mitigation Potential by Sector                          |     |
|------|------------------------------------------------------------------|-----|
| 13.  | The Energy Sector                                                |     |
|      | 13.1. Power Sector                                               |     |
|      | 13.2. Non-Power Sector                                           |     |
|      | 13.3. Technical Mitigation Potential                             |     |
|      | 13.4. WAM Projection                                             |     |
| 14.  | The Industry Sector                                              |     |
|      | 14.1. Sectoral Growth Assumptions                                |     |
|      | 14.2. Metals Sector                                              |     |
|      | 14.3. Minerals Sector                                            |     |
|      | 14.4. Chemicals Production Sector                                |     |
|      | 14.5. Mining Sector                                              |     |
|      | 14.6. Buildings Sector                                           |     |
|      | 14.7. Mitigation Potential from Other Sectors                    |     |
|      | 14.8. Technical Mitigation Potential                             |     |
|      | 14.9. WAM Projection                                             |     |
| 15.  | The Transport Sector                                             |     |
|      | 15.1. Key Assumptions                                            |     |
|      | 15.2. Road Transport                                             |     |
|      | 15.3. Rail Transport                                             |     |
|      | 15.4. Aviation                                                   |     |
|      | 15.5. Technical Mitigation Potential                             |     |
|      | I5.6. WAM Projection                                             |     |
| 16.  | The Waste Sector                                                 |     |
|      | 16.1. Marginal Abatement Cost Curves                             |     |
|      | 16.2. Technical Mitigation Potential                             |     |
| 17.  | The Agriculture, Forestry and Other Land Use Sector              |     |
|      | 17.1. Marginal Abatement Cost Curves                             |     |
|      | 17.2, Technical Mitigation Potential                             |     |
| Cha  | apter V: National Mitigation Potential                           |     |
| 18.  | Summary of National Mitigation Potential                         | 84  |
|      | 18.1. Marginal Abatement Cost Curve                              |     |
|      | 18.2. Technical Mitigation Potential                             |     |
| 19.  | National Abatement Pathways                                      | .90 |
|      | 19.1. Level of Implementation of Mitigation Potential            |     |
|      | 19.2. Marginal Net Benefit                                       |     |
| 20.  | The Wider Impacts of Implementing the National Abatement Pathway | 95  |
| 201  | 20.1. Impacts on Gross Domestic Product                          |     |
|      | 20.2. Impacts on Employment                                      |     |
|      | 20.3. Conclusions With Regard to Economic Impact                 |     |
| Cha  | ipter VI: Summary                                                | 99  |
|      |                                                                  |     |
| 21.  | Summary of Key Project Outcomes                                  |     |
|      | rences                                                           |     |
| Addi | itional Information                                              |     |

## List of Tables

| Table 1:  | GHG emission projections based on LTMS GWC and PPD scenarios, in $\rm ktCO_2$ equivalent (after DEA, 2011a)                                                                      | 3  |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Table 2:  | List of key sectors and sub-sectors covered in the mitigation potential analysis                                                                                                 | 6  |
| Table 3:  | Final demand projections for the medium growth scenario (%)                                                                                                                      | 9  |
| Table 4:  | Production projections for the main economic sectors for the medium growth scenario (%)                                                                                          | 10 |
| Table 5:  | Existing policies and measures assessed                                                                                                                                          | 12 |
| Table 6:  | Estimates of reductions to be achieved with existing policies and measures, per key sector (MtCO <sub>2</sub> e)                                                                 | 13 |
| Table 7:  | National GHG emissions under the reference case WOM projection (2000–2050) (ktCO $_{ m 2}$ e)                                                                                    | 14 |
| Table 8:  | National GHG emissions under the reference case WOM projection (2000–2050) (ktCO <sub>2</sub> e), with electricity emissions allocated to end use sectors                        | 15 |
| Table 9:  | National GHG emissions under the reference case WEM projection (2000–2050) (ktCO $_{\rm 2}$ e)                                                                                   | 15 |
| Table 10: | National GHG emissions under the reference case WEM projection (2000-2050) (ktCO <sub>2</sub> e), with electricity emissions allocated to end use sectors                        | 16 |
| Table   : | National GHG emissions under the WEM projection (2000-2050) (ktCO $_{\rm 2}{\rm e})$ for low and high economic growth                                                            | 19 |
| Table 12: | Assumed energy prices for 2010 base year and projected prices up to 2050                                                                                                         | 25 |
| Table 13: | Assumptions regarding costing mitigation measures for the AFOLU sector                                                                                                           | 28 |
| Table 14: | Weighting of criteria to define abatement pathways                                                                                                                               | 35 |
| Table 15: | Average scores from the MCA model under each of the three abatement pathways, shown for each 25th percentile                                                                     | 36 |
| Table 16: | Energy subsectors (with IPCC emissions source classifications) included in the mitigation analysis                                                                               | 38 |
| Table 17: | Summary of technical mitigation potential for the energy sector, including a breakdown by sector and subsector and showing results for 2020, 2030 and 2050 (ktCO <sub>2</sub> e) | 47 |
| Table 18: | Percentage reduction in reference WEM emissions for the energy sector, assuming all technical mitigation potential is implemented                                                | 47 |
| Table 19: | Percentage reduction in reference WEM emissions for the non-power energy sector, assuming all technical mitigation potential is implemented                                      | 47 |
| Table 20: | Industrial subsectors (with IPCC emissions source classifications) included in the mitigation analysis                                                                           | 49 |
| Table 21: | Average GDP growth rates for industry subsectors (per annum)                                                                                                                     | 50 |
| Table 22: | Summary of technical mitigation potential for the industry sector, including a breakdown by sector and subsector and showing results for 2020, 2030 and 2050 ( $ktCO_2e$ )       | 66 |
| Table 23: | Percentage reduction in reference WEM emissions for the industry sector, assuming all technical mitigation potential is implemented                                              | 66 |
| Table 24: | List of mitigation opportunities identified in the transport sector                                                                                                              | 68 |
| Table 25: | Modal shift mitigation potential, showing abatement (ktCO $_2$ e) and marginal abatement cost (MAC) estimates (ZAR/tCO $_2$ e)                                                   | 70 |
| Table 26: | Total mitigation potential for the transport sector, assuming all measures are implemented (in ktCO2e)                                                                           | 76 |
|           |                                                                                                                                                                                  |    |

| Table 27: | Percentage reduction in reference WEM emissions for the transport sector, assuming all technical mitigation potential is implemented (%)                                                                                                                                                                  | 77  |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Table 28: | Total mitigation potential for the waste sector, assuming all measures are implemented (in ktCO2e)                                                                                                                                                                                                        | 80  |
| Table 29: | Technical mitigation potential for the AFOLU sector, assuming all measures are implemented (in ktCO <sub>2</sub> e)                                                                                                                                                                                       | 83  |
| Table 30: | Total national abatement, assuming full implementation of all measures under the WAM projection.<br>Results show abatement (ktCO <sub>2</sub> e) as well as upper and lower bounds for marginal abatement cost<br>(MAC), (R/tCO <sub>2</sub> e) per quartile of total abatement, for 2020, 2030 and 2050. | 86  |
| Table 31: | Total technical mitigation potential for the WAM projection (in ktCO <sub>2</sub> e). Results are shown per key sector, and also as a percentage reduction of the reference case WEM projection. Total remaining emissions under the WAM projection are also shown.                                       | 88  |
| Table 32: | Abatement (ktCO <sub>2</sub> e) and Marginal Abatement Cost (MAC, R/tCO <sub>2</sub> e) for all measures in 2020, 2030 and 2050                                                                                                                                                                           | 105 |
| Table 33: | Quantitative data informing the scoring of options for the Industry sector scoring as well as score for main criteria and overall weighted score for the Balanced Weighting pathway (NPV – net present value, GPV – gross value added)                                                                    | 112 |
| Table 34: | Overall weighted score and ranking of all measures for the balanced weighting, cost and implementability, and social and environmental pathways                                                                                                                                                           | 124 |

## List of Figures

| Figure I:  | LTMS emission trajectories for Growth Without Constraint and Peak, Plateau and Decline scenarios (after DEA, 2011a)                                                                                                                                                                                           | 3  |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure 2:  | Schematic diagram illustrating the main emission scenarios developed within the LTMS scenario framework (ERC, 2007b)                                                                                                                                                                                          | 4  |
| Figure 3:  | Graphical representation of the main mitigation actions under the LTMS study (ERC, 2007b)                                                                                                                                                                                                                     | 4  |
| Figure 4:  | Structure of the Mitigation Potential Analysis report                                                                                                                                                                                                                                                         | 7  |
| Figure 5:  | National GHG emissions under the reference case WOM projection, showing a breakdown per sector (2000–2050)                                                                                                                                                                                                    | 14 |
| Figure 6:  | National GHG emissions under the reference case WOM projection, showing a breakdown per sector (2000–2050), with electricity emissions allocated to end use sectors                                                                                                                                           | 14 |
| Figure 7:  | National GHG emissions under the reference case WEM projection, showing a breakdown per sector (2000–2050)                                                                                                                                                                                                    | 15 |
| Figure 8:  | National GHG emissions under the reference case WEM projection, showing a breakdown per sector (2000–2050), with electricity emissions allocated to end use sectors                                                                                                                                           | 16 |
| Figure 9:  | National GHG emissions under the reference case WEM projection, showing high and low growth compared to medium growth (2000–2050)                                                                                                                                                                             | 17 |
| Figure 10: | National GHG emissions under the WEM projection, with low economic growth (2000–2050)                                                                                                                                                                                                                         | 18 |
| Figure   : | National GHG emissions under the WEM projection, with high economic growth (2000-2050)                                                                                                                                                                                                                        | 18 |
| Figure 12: | Tools used to undertake analysis of mitigation options and associated pathways                                                                                                                                                                                                                                | 32 |
| Figure 13: | Criteria and sub-criteria for the MCA model (as approved by the TWG-M)                                                                                                                                                                                                                                        | 34 |
| Figure 14: | Marginal abatement cost curve for the power sector in 2020                                                                                                                                                                                                                                                    | 39 |
| Figure 15: | Marginal abatement cost curve for the power sector in 2030                                                                                                                                                                                                                                                    | 40 |
| Figure 16: | Marginal abatement cost curve for the power sector in 2050                                                                                                                                                                                                                                                    | 40 |
| Figure 17: | Marginal abatement cost curve for the non-power sector in 2020                                                                                                                                                                                                                                                | 42 |
| Figure 18: | Marginal abatement cost curve for the non-power sector in 2030                                                                                                                                                                                                                                                | 42 |
| Figure 19: | Marginal abatement cost curve for the non-power sector in 2050                                                                                                                                                                                                                                                | 43 |
| Figure 20: | WAM scenario for the energy sector, showing a breakdown between the power and non-power sectors. Emissions from the power sector have been reallocated to end users and electricity related emissions savings have been adjusted accordingly. Reference case WOM and WEM emission projections are also shown. | 48 |
| Figure 21: | WAM scenario for the non-power sector, showing a breakdown between subsectors. Emissions from the power sector have been reallocated to end users and electricity related emissions savings have been adjusted accordingly. Reference case WOM and WEM emission projections are also shown.                   | 48 |
| Figure 22: | Marginal abatement cost curve for the metals sector in 2020                                                                                                                                                                                                                                                   | 51 |
| Figure 23: | Marginal abatement cost curve for the metals sector in 2030                                                                                                                                                                                                                                                   | 51 |
| Figure 24: | Marginal abatement cost curve for the metals sector in 2050.                                                                                                                                                                                                                                                  | 52 |
| Figure 25: | Marginal abatement cost curve for the minerals sector in 2020                                                                                                                                                                                                                                                 | 54 |
|            |                                                                                                                                                                                                                                                                                                               |    |

## xiv mitigation REPORT

| Figure 26: | Marginal abatement cost curve for the minerals sector in 2030                                                                                                                                                                                                                             | 55 |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure 27: | Marginal abatement cost curve for the minerals sector in 2050                                                                                                                                                                                                                             | 55 |
| Figure 28: | Marginal abatement cost curve for the chemicals sector in 2020                                                                                                                                                                                                                            | 57 |
| Figure 29: | Marginal abat <mark>ement cost curv</mark> e for the chemicals sector in 2030                                                                                                                                                                                                             | 58 |
| Figure 30: | Marginal abatement cost curve for the chemicals sector in 2050                                                                                                                                                                                                                            | 58 |
| Figure 31: | Marginal abatement cost curve for the mining sector in 2020                                                                                                                                                                                                                               | 60 |
| Figure 32: | Marginal abatement cost curve for the mining sector in 2030                                                                                                                                                                                                                               | 60 |
| Figure 33: | Marginal abatement cost curve for the mining sector in 2050                                                                                                                                                                                                                               | 60 |
| Figure 34: | Marginal abatement cost curve for the buildings sector in 2020                                                                                                                                                                                                                            | 62 |
| Figure 35: | Marginal abatement cost curve for the buildings sector in 2030                                                                                                                                                                                                                            | 63 |
| Figure 36: | Marginal abatement cost curve for the buildings sector in 2050                                                                                                                                                                                                                            | 63 |
| Figure 37: | Marginal abatement cost curve for the pulp and paper sector in 2020                                                                                                                                                                                                                       | 64 |
| Figure 38: | Marginal abatement cost curve for the pulp and paper sector in 2030                                                                                                                                                                                                                       | 65 |
| Figure 39: | Marginal abatement cost curve for the pulp and paper sector in 2050                                                                                                                                                                                                                       | 65 |
| Figure 40: | WAM scenario for the industry sector, showing a breakdown per sector. Emissions from the power sector have been reallocated to end-use sectors and electricity-related emissions savings have been adjusted accordingly. The reference case WEM emission projection is also shown.        | 67 |
| Figure 41: | Marginal abatement cost curve for the road sector in 2020                                                                                                                                                                                                                                 | 70 |
| Figure 42: | Marginal abatement cost curve for the road sector in 2030                                                                                                                                                                                                                                 | 71 |
| Figure 43: | Marginal abatement cost curve for the road sector in 2050                                                                                                                                                                                                                                 | 71 |
| Figure 44: | Marginal abatement cost curve for the rail sector in 2020                                                                                                                                                                                                                                 | 72 |
| Figure 45: | Marginal abatement cost curve for the rail sector in 2030                                                                                                                                                                                                                                 | 73 |
| Figure 46: | Marginal abatement cost curve for the rail sector in 2050                                                                                                                                                                                                                                 | 73 |
| Figure 47: | Marginal abatement cost curve for the aviation sector in 2020                                                                                                                                                                                                                             | 74 |
| Figure 48: | Marginal abatement cost curve for the aviation sector in 2030                                                                                                                                                                                                                             | 75 |
| Figure 49: | Marginal abatement cost curve for the aviation sector in 2050                                                                                                                                                                                                                             | 75 |
| Figure 50: | WAM scenario for the transport sector, showing a breakdown per sector. Emissions from the power sector have been reallocated to end-use sectors and electricity-related emissions savings have been adjusted accordingly. Reference case WOM and WEM emission projections are also shown. | 77 |
| Figure 51: | Marginal abatement cost curve for the waste sector in 2020                                                                                                                                                                                                                                | 79 |
| Figure 52: | Marginal abatement cost curve for the waste sector in 2030                                                                                                                                                                                                                                | 79 |
| Figure 53: | Marginal abatement cost curve for the waste sector in 2050                                                                                                                                                                                                                                | 80 |
| Figure 54: | Marginal abatement cost curve for the AFOLU sector in 2020                                                                                                                                                                                                                                | 81 |
| Figure 55: | Marginal abatement cost curve for the AFOLU sector in 2030                                                                                                                                                                                                                                | 82 |
| Figure 56: | Marginal abatement cost curve for the AFOLU sector in 2050                                                                                                                                                                                                                                | 83 |

| Figure 57: | National marginal abatement cost curve for 2020                                                                                                                                                                                                                                                                                                                       | 84 |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure 58: | National marginal abatement cost curve for 2030                                                                                                                                                                                                                                                                                                                       | 85 |
| Figure 59: | National marginal abatement cost curve for 2050                                                                                                                                                                                                                                                                                                                       | 85 |
| Figure 60: | National abatement potential assuming all measures are implemented under the WAM projection.<br>Results are shown for each of the key sectors, and reference projections for the reference case WOM<br>and WEM projections are also shown. The total for all remaining emissions is indicated using grey<br>shading.                                                  | 86 |
| Figure 61: | Remaining emissions under the WAM projection. Results are shown for each of the key sectors, and reference projections for the reference case WOM and WEM projections are also shown. Also indicated is the national estimate of mitigation potential (purple shading).                                                                                               | 87 |
| Figure 62: | National abatement pathways based on the WAM projection. Pathways indicated assume difference levels of implementation of the national mitigation potential (100%, 75%, 50%, 25%). Also shown are the reference case WOM and WEM projections as well as the GWC and PPD scenarios developed under the LTMS study (ERC, 2007) and the NCCRP (DEA, 2011a), respectively | 91 |
| Figure 63: | Split in technical mitigation potential between sectors as the level of identified mitigation potential is increased (note: cut-offs are not at exact 25 percentiles)                                                                                                                                                                                                 | 92 |
| Figure 64: | Proportion of total abatement potential nationally plotted against marginal abatement net benefit scores (also shown as percentiles of all scores) for the balanced weighting abatement pathway.                                                                                                                                                                      | 93 |
| Figure 65: | Proportion of total abatement potential nationally plotted against marginal abatement net benefit scores (also shown as percentiles of all scores) for the abatement pathway which emphasises the cost and implementability of mitigation measures                                                                                                                    | 94 |
| Figure 66: | Proportion of total abatement potential nationally plotted against marginal abatement net benefit scores (also shown as percentiles of all scores) for the abatement pathway which emphasises social and environmental factors                                                                                                                                        | 94 |
| Figure 67: | GDP impact per sector (value, R million) assuming 100% of technical mitigation potential is implemented                                                                                                                                                                                                                                                               | 95 |
| Figure 68: | The varying impact over time of GDP, assuming all available mitigation potential is implemented                                                                                                                                                                                                                                                                       | 96 |
| Figure 69: | Impact on jobs per sector assuming 100% of technical mitigation potential is implemented                                                                                                                                                                                                                                                                              | 97 |
| Figure 70: | The marginal impact on employment over time, assuming all available mitigation potential is implemented under the balanced weighting pathway                                                                                                                                                                                                                          | 98 |

## List of Boxes

| Box 1: Accounting for Early Mitigation Action when Projecting Emissions      | 12 |
|------------------------------------------------------------------------------|----|
| Box 2: Energy Price Assumptions                                              |    |
| Box 3: Distinguishing between Projections, Scenarios and Abatement Pathways. |    |
| Box 4: Multi-Criteria Analysis                                               | 33 |
| Box 5: Marginal Abatement Net Benefit Curves                                 |    |



### **Executive Summary**

A greenhouse gas mitigation potential analysis has been conducted for South Africa. The analysis has identified and analysed mitigation options in key economic sectors. In the process, an updated projection of national greenhouse gas (GHG) emissions into the future has been developed, along with marginal abatement cost curves (MACCs) for key sectors and subsectors. A socio-economic and environmental assessment of the identified mitigation options has also been conducted, leading to the development of national abatement pathways and an assessment of the wider macroeconomic impacts of implementing a broad set of mitigation options.

**Projections of economic growth are aligned to targeted levels of future economic growth.** The targeted level of future economic growth is based on the moderate growth rate defined by National Treasury. The moderate growth scenario forecasts real growth in gross domestic product (GDP growth) of 4.2% per annum over the medium-term (defined in the draft Integrated Energy Plan as 2015–2020) and 4.3% per annum over the long-term (2021–2050). A detailed inter-industry economic modelling framework, the Inter-industry Forecasting Model (INFORUM), was used as the basis for projecting economic growth in all sectors of the South African economy.

Reference case GHG emissions projections are based on the projections of economic growth. Two projections have been provided. The first is a reference case 'without measures' (WOM) projection of emissions from 2000 to 2050, which assumes that no climate change mitigation actions have taken place since 2000. Under the WOM projection, emissions are projected to reach 1,692 MtCO2e by 2050. The second 'with existing measures' (WEM) projection incorporates the impacts of climate change mitigation actions including climate change policies and measures implemented to date. For the period 2000 to 2010 the projections follow the actual path of observed emissions according to the draft 2010 National Greenhouse Gas Inventory (GHGI), apart from the power sector where additional information from Eskom<sup>1</sup> was used to revise the emissions estimate in the draft GHGI. Under the WEM projection, emissions are projected to reach 1,593 MtCO<sub>2</sub>e by 2050.

**GHG** emissions projections are sensitive to economic growth. A sensitivity analysis was carried out based on a projection of higher and lower economic growth. Growth projections for low and high growth of 3.8% and 5.4%, respectively per annum by 2050 were based on inputs provided by National Treasury. Under the low growth scenario, GHG emissions are projected to be 15% lower (1,361 MtCO<sub>2</sub>e) by 2050 than the reference case WEM projection. Under the high growth scenario, GHG emissions are projected to be 18% higher (1,882 MtCO<sub>2</sub>e) by 2050 than the reference case WEM projection.

Mitigation potential has been identified and analysed for key sectors. These sectors include energy, industry, transport, waste, and agriculture, forestry and other land use (AFOLU). Marginal abatement cost curves have been developed for subsectors, sectors and key sectors, providing an estimate of mitigation potential and marginal abatement cost for a broad range of mitigation measures.

Estimates of mitigation potential for key sectors have been calculated independently of changes in other sectors and hence may overestimate the potential of electricity saving measures. The estimate of national mitigation potential (see below) includes an estimate of the impact of these interactions.

For the energy sector, technical mitigation potential in 2020, 2030 and 2050 is 33, 173 and 467  $MtCO_2e$  (accounting for 33%, 51% and 55% of available potential at a national level in those three snapshots). The power sector's contribution to technical mitigation potential at a national level in the three snapshots is 29, 137 and 417  $MtCO_2e$  (or 29%, 40% and 49%). In calculating total technical mitigation potential for the energy sector, abatement estimates for the other energy industries and petroleum refining sectors show only the impact of measures which can be implemented in the sector. They do not show savings which might occur due to a reduced need for new capacity in the sector if demand for liquid fuel is reduced as a result of successful implementation of mitigation options in the transport sector.

The industry sector accounts for 45, 104 and 258 MtCO<sub>2</sub>e in 2020, 2030 and 2050. For the transport sector, the equivalent mitigation estimates (based on direct emission savings only) are 7, 23 and 62 MtCO<sub>2</sub>e. Mitigation estimates in the waste and AFOLU sectors are smaller: 10, 22 and 40 MtCO<sub>2</sub>e in the waste sector and 5, 10 and 5 MtCO<sub>2</sub>e in the AFOLU sector:

National mitigation potential has been estimated. National mitigation potential (assuming 100% implementation of all identified mitigation options) is estimated at 100 MtCO<sub>2</sub>e

I. On the energy content of coal burnt for generation

in 2020, 340 MtCO<sub>2</sub>e in 2030 and 852 MtCO<sub>2</sub>e in 2050. This represents a reduction of reference case WEM emissions of 15%, 40% and 54% in 2020, 2030 and 2050, respectively. When considering the total mitigation which might be achieved across all sectors it is important to account for the interaction between sectors. For example, implementation of mitigation measures in the power sector will reduce the carbon intensity of electricity supplied, hence reducing the savings achieved by demand side electricity saving measures. Similarly, mitigation measures in the transport sector will reduce demand for liquid fuels, reducing the amount of new capacity and hence emissions in the refining and other energy industries subsectors. The national estimates of mitigation potential account for these interactions.

The national MACC indicates the proportion of mitigation potential which can be implemented at a negative marginal abatement cost. Marginal abatement costs estimated in this study vary widely. Nonetheless, significant potential exists to implement mitigation options which have a negative marginal abatement cost. In 2020, 38% of the total estimate of mitigation potential (40 MtCO<sub>2</sub>e) can be achieved through implementing mitigation measures with a negative marginal abatement cost. In 2030, this figure is 25% (88 MtCO2e). In 2050 the figure is similar at 26% (227 MtCO2e) as abatement potential, costs and energy prices rise.

Absolute levels of emissions in South Africa do not reduce over the long term. Assuming all identified mitigation potential is implemented, emissions decrease in absolute terms in both 2020 and 2030. But in 2050, and for all other levels of implementation of abatement potential, no absolute emission reductions relative to 2010 are achieved. The assumptions driving the decarbonisation of South Africa's electricity supply (which are aligned to the Integrated Resource Plan, 2010), effectively place a cap on the mix of coal and other energy sources (such as renewables, biofuels and nuclear power) between 2010 and 2030. Beyond this horizon, the share of coal and non-coal-based power in South Africa is effectively held constant – with growth in supply driven by demand from end-use sectors.

Three illustrative national abatement pathways have been developed. Three mitigation pathways have been determined, based on different weightings of the main criteria in the multi-criteria analysis framework developed for the purpose of assessing the socio-economic and environmental impacts of mitigation options. The multi-criteria decision analysis (MCA) model allows a range of evaluation criteria to be combined in a decision-making framework. The resulting ranking of measures is thus based on more than merely the consideration of abatement potential and marginal abatement cost. The selected pathways are a) a balanced weighting pathway, which allows for relatively equal consideration of all key factors in the MCA model, b) a pathway which emphasises the cost and implementability of mitigation measures, effectively assigning a larger weight to those measures which have lower marginal abatement costs and are easier to implement and c) a pathway which emphasises social and environmental factors, effectively prioritising measures with lower impacts in these areas.

Implementation of mitigation potential becomes more difficult as targeted levels of national emissions reduction increase. The concept of marginal net benefit and the use of marginal abatement net benefit curves (MANBCs) allow a ranked list of mitigation options to be established. As these are applied incrementally, they create increasing levels of mitigation with decreasing net benefit, taking all evaluation criteria into consideration. The curves illustrate that, with increasing targets for national emissions reduction, implementation of mitigation potential will become harder as measures become increasingly costly, with more substantially negative social and environmental impacts and also as the limits of technological possibilities are reached.

The wider macroeconomic impacts of implementing a broad range of mitigation options have been assessed. The INFO-RUM model has been used to assess the wider macroeconomic impacts of implementing the mitigation options identified in this study. At average levels of impact on GDP of the order of 1.5% and employment of 1.2%, with all mitigation measures included, the GHG mitigation measures will not have a major impact on the economy. What gains there are from direct employment and backward linkages are counteracted by losses due to forward linked effects: prices typically increase with increasing costs associated with implementing most measures without a related gain in revenue. The complexity of the economy combined with the complex set of mitigation measures applied to many sectors of the economy mean that the results are useful mainly to show the broad scale and trends with respect to economic impacts. Further work will be required to identify the economic costs of climate change and compare them to various mitigation options. As part of this further work, there is a need to better understand the drivers and barriers of investment in greener technology.

## mitigation REPORT

## Chapter I: Introduction

#### I. Background

The South African economy has developed on the basis of energy-intensive industry and low-cost, coal-fired electricity. As a consequence, the country's absolute and per capita greenhouse gas (GHG) emissions are high in comparison to many developing countries. About 83% of South Africa's GHG emissions are derived from energy supply and consumption in comparison to an average of 49% among other developing countries.

Like many developing countries, South Africa also faces a number of social, economic and environmental challenges. Consequently, South Africa's approach to mitigating climate change seeks to strike a balance that will enable the reduction of GHG emissions (voluntarily as a good global citizen), whilst maintaining economic competitiveness, realising the developmental goals and harnessing the economic opportunities that accompany the transition to a lower carbon economy.

As a responsible global citizen and with both moral and legal obligations under the United Nations Framework Convention on Climate Change (UNFCCC) and its Kyoto Protocol, South Africa is committed to contributing its fair share to global GHG mitigation efforts in order to keep global temperature increases below 2°C. In this regard, President Jacob Zuma announced on 6 December 2009 that South Africa will implement mitigation actions that will collectively result in a 34% and a 42% deviation below its business as usual emissions growth trajectory by 2020 and 2025, respectively. In accordance with Article 4.7 of the UNFCCC, the extent to which this outcome can be achieved depends on the extent to provide financial, capacity-building, technology development and technology transfer support to developing countries.

According to the Peak, Plateau and Decline (PPD) emissions trajectory, South Africa's long-term mitigation strategy calls for the carbon emissions trajectory to peak in the period 2020 to 2025 in a range with a lower limit of 398 Mt carbon dioxide equivalent ( $CO_2e$ ) per annum and upper limits of 583 and 614 MtCO<sub>2</sub>e for 2020 and 2025, respectively. Emissions will then plateau for up to 10 years within a range extending from 398 MtCO<sub>2</sub>e to 614 Mt CO<sub>2</sub>e, after which emissions will decline in absolute terms within a range with a lower limit of 212 MtCO<sub>2</sub>e and an upper limit of 428 MtCO<sub>2</sub>e by 2050.

The last comprehensive modelling system to explore mitigation potential and develop mitigation scenarios in the South African economy was the Long Term Mitigation Scenarios (LTMS) study. The last published National Greenhouse Gas Inventory report was completed for the year 2000. However, the LTMS and the GHG Inventory are now considerably out of date and there was a need to conduct a new assessment of mitigation potential. In accordance with the National Climate Change Response Policy (NCCRP), the overall objective of this study has been to conduct an updated, bottom-up assessment of mitigation potential in key economic sectors in order to identify a set of viable options for reducing GHGs.

#### 2. The National Climate Change Response Policy

The National Climate Change Response Policy (NCCRP) is government's comprehensive policy framework for responding to climate change, providing a strategic approach to both mitigation and adaptation. It presents the vision for an effective climate change response and the long-term transition to a climate-resilient, equitable and internationally competitive lower-carbon economy and society. This vision is premised on government's commitment to sustainable development and a better life for all. The Response Policy outlines a strategic response to climate change within the context of South Africa's broader national development goals, which include economic growth, international economic competitiveness, sustainable development, job creation, improving public and environmental health, and poverty alleviation.

The Response Policy highlights the challenges facing development in South Africa brought on by the physical effects of climate change, while recognising the role to be played by the country in reducing emissions. The two main objectives of the policy are to:

- Effectively manage inevitable climate change impacts through interventions that build and sustain South Africa's social, economic and environmental resilience and emergency response capacity.
- Make a fair contribution to the global effort to stabilise greenhouse gas concentrations in the atmosphere at a level that avoids dangerous anthropogenic interference with the climate system, within a timeframe that enables economic, social and environmental development to proceed in a sustainable manner (DEA, 2011 a p5).

#### 2.1 Approach to Mitigation

South Africa's approach to mitigation, which is addressed by Section 6 of the NCCRP, balances the country's contribution, as a responsible global citizen, to the international effort to curb global emissions with the economic and social opportunities presented by the transition to a lower-carbon economy, and with the requirement that the country successfully tackles the development challenges facing it. The NCCRP is intended to promote adaptation and mitigation measures that will make development more sustainable, both in socioeconomic and environmental terms. South Africa recognises that stabilisation of GHG concentrations in the atmosphere at a level that prevents dangerous anthropogenic interference with the climate system will require effective international cooperation. The country therefore regards mitigation as a national priority and is committed to actively engaging in international negotiations under the UNFCCC and its Kyoto Protocol, which South Africa has ratified.

Section 6 of the NCCRP outlines the key elements of the overall approach to mitigation. One of those elements requires the identification of desired emission reduction outcomes for each significant sector and subsector of the economy based on an in-depth assessment of the mitigation potential, best available mitigation options, science, evidence and a full assessment of the costs and benefits. The mitigation potential analysis supports this element.

#### 2.2 The Technical Working Group on Mitigation

In order to develop the mitigation approaches set out in the NCCRP, the Department of Environmental Affairs (DEA) established a Technical Working Group on Mitigation (TWG-M). The TWG-M is comprised of a range of stakeholders that includes government departments, business representatives, civil society and academics.

The purpose of the TWG-M is to provide technical inputs and support identification of mitigation options, as well as to assist the DEA to coordinate and align mitigation work at sectoral and national levels. Among other things the TWG-M has therefore assisted the DEA in the following work:

- developing a list of sectors as the basis for mitigation analysis
- reviewing the assessment of mitigation potential and best available mitigation options in all sectors of the economy
- reviewing the assessment of economic, environmental and social impacts of proposed mitigation approaches.

#### 2.3 Sector Task Teams

Five sector task teams were established to support the identification of mitigation options in relevant sectors. The task teams were established to lead and coordinate sectoral work in the identification of viable mitigation options in the agriculture, forestry and other land use (AFOLU) energy, industry, transport and waste sectors. The functions of the task teams covered the following:

- discussing and recommending a list of mitigation options in relevant sectors
- discussing and agreeing on levels of realistic mitigation potential
- reviewing marginal abatement cost curves (MACC) and scoring mitigation options using agreed multi-criteria analysis (MCA) model criteria
- helping to resolve specific sector-related issues
- assisting the appointed service provider to obtain relevant data and or documents where possible
- ensuring a strong link to the relevant sector policies, plans and programmes.

#### 3. The Long Term Mitigation Scenarios Study

The LTMS study was commissioned by the Department of Environmental Affairs in an effort to build mitigation scenarios based on the best available research and information at the time. The process was initiated in 2005 and a series of reports were published in 2007 (ERC, 2007a). One of the key motivations behind the LTMS study was to assist the South African Government "to define not only its position on future commitments under international treaties, but also shape its climate policy for the longer-term future" (ERC, 2007b). In fact, the scenarios developed under the LTMS study did inform South Africa's commitments under the Copenhagen Accord of the UNFCCC, and the core elements of that work also inform the NCCRP and are still in use today.

The key objectives of the LTMS process were to ensure that South African stakeholders understand and are focused on a range of ambitious but realistic scenarios of future climate action, both for themselves and for the country, based on best available information. Notably these include long-term emissions scenarios and their cost implications; that the SA delegation is well-prepared with clear positions for post-2012 dialogue; and that Cabinet can approve (a) a long-term climate policy and (b) positions for the dialogue under the UNFCCC (ERC, 2007b).

#### 3.1 The LTMS Scenario Framework

A scenario development approach, driven by stakeholder inputs, was central to the LTMS study. The boundaries of the LTMS scenario framework are defined by a 'growth without constraints' (GWC) emission scenario (based on an assumption of growth without any carbon constraint) and a 'required by science' (RBS) emission scenario. RBS is a purely notional scenario which assumes that South Africa implements mitigation to the extent required by science to meets its fair contribution towards global emission reductions. The same scenarios inform the PPD emissions trajectory referred to above (see Figure I and Table I for detail). Peak-Plateau-Decline (PPD) Growth Without Constraint (GWC)

Figure 1: LTMS emission trajectories for 'growth without constraint' and 'peak, plateau and decline' scenarios (after DEA, 2011a)

| Table 1: | GHG emission | projections based on I | LTMS GWC and PPD | scenarios, in ktCO <sub>3</sub> e equi | ivalent (after DEA, 2011a) |
|----------|--------------|------------------------|------------------|----------------------------------------|----------------------------|
|----------|--------------|------------------------|------------------|----------------------------------------|----------------------------|

|                                 | 2010    | 2020    | 2030      | 2040      | 2050      |
|---------------------------------|---------|---------|-----------|-----------|-----------|
| Growth Without Constraint (GWC) | 546,974 | 749,325 | 1,004,933 | 1,297,991 | l,638,695 |
| Peak, Plateau and Decline (PPD) |         |         |           |           |           |
| Upper Boundary                  | 547,000 | 583,000 | 603,667   | 552,000   | 428,000   |
| Lower Boundary                  | 398,000 | 398,000 | 398,000   | 336,000   | 212,000   |
| Range                           | 149,000 | 185,000 | 205,667   | 216,000   | 216,000   |

The scenarios developed within the LTMS framework are illustrated in Figure 2. A third scenario, current development plans (CDP), shows what implementing existing policy would achieve, if extended into the future. A similar distinction between an emission scenario which assumes no mitigation and a projection of emissions based on existing policy and mitigation actions will be made in the current study (see Chapter II).The LTMS study referred to these three scenarios as envelope scenarios.They define the space within which mitigation action occurred under the LTMS study. The LTMS study also defined two further action-oriented scenarios that indicate alternative paths between current emission trajectories and what is required by science. Unlike the other scenarios, these scenarios were built from the bottom up. Stakeholders reviewed mitigation actions proposed by the LTMS consulting team, which were then modelled by the research teams. Based on these results, actions were combined into action packages. Actions could be grouped on the basis of costs or interest (e.g. green, nuclear or coal agendas). The scenarios were described in the study in terms of what South Africa can do or could do (ERC, 2007b).

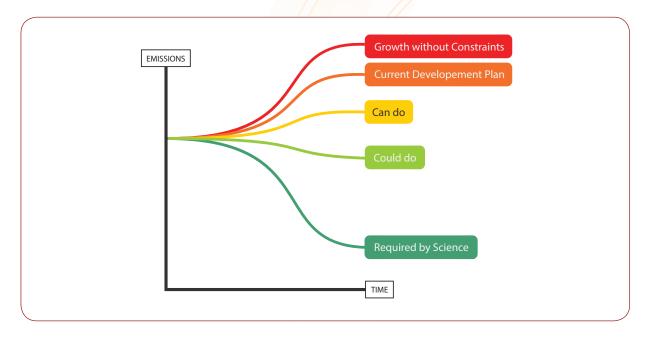



Figure 2: Schematic diagram illustrating the main emission scenarios developed within the LTMS scenario framework (ERC, 2007b)

The LTMS study adopted the term "wedges" to describe sets of mitigation actions to reduce emissions from the GWC to the RBS pathway. These are shown graphically in Figure 3. These wedges refer to estimated emission reductions over time. As emission reductions increase over time, the resulting graphs take on the shape of a wedge. These wedges described an initial set of mitigation actions that could be immediately initiated (start now), and a set of actions that would see the ambition and level of mitigation grow over time (scale up). Further emission reductions were estimates based on the adoption of a range of economic instruments in a set of actions referred to as 'use the market'.

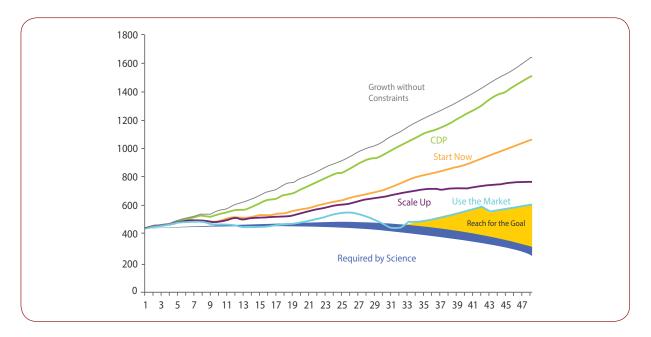



Figure 3: Graphical representation of the main mitigation actions under the LTMS study (ERC, 2007b)

The scenarios and mitigation actions developed in the LTMS study showed that the gap between GWC and RBS could not be fully closed if the identified mitigation actions were all implemented. In discussing this result, the authors of the LTMS study noted that a rigorous quantitative analysis relies on current (known) technologies and cannot model future (as yet undeveloped) technologies that may reduce this gap. The study also did not model behavioural changes which may be important to emission reductions in future.

#### 3.2 Differences Between the LTMS Study and the Current Greenhouse Gas Mitigation Potential Analysis Study

The current study differs from the LTMS study in a number of ways:

#### 1. Different economic growth assumptions

Although assumptions of future economic growth are a key driver of both analyses, the economic growth rates assumed in the LTMS were generally more optimistic than those in the current study.

#### 2. Detailed assessment of mitigation potential

The mitigation potential analysis has been more detailed, both in terms of its sectoral and subsectoral coverage as well as in its engagement with stakeholders to identify and quantify mitigation potential than the LTMS study. It is also worth noting that stakeholders have been able to provide more detailed and better-informed estimates of firm- and sector-level mitigation potential than was possible during the LTMS study.

#### 3. Focus on implementation options not policy formulation

The current analysis is geared towards implementation (in the context of the NCCRP) rather than policy formulation itself, which was the case for the LTMS study (ERC, 2007a).

#### 4. Update of the LTMS study

The mitigation potential analysis has provided an updated assessment of mitigation options to the LTMS study. Projections of national GHG emissions have been aligned to the draft National Greenhouse Gas Inventory, including historically-observed emissions for 1990, 1994, and annually between 2000 and 2010 (DEA, 2013). This is both a more complete and higher-quality historical dataset and a more up-to-date assessment. The LTMS study (completed in 2007) was based on the 1990 and 1994 inventories (by then already out of date). In addition, all estimates of mitigation potential have been updated in the current study. There are now revised inputs from sectoral experts (consulted during 2012 and 2013), which have been augmented by international benchmark studies (based on best available technology) where applicable.

#### 5. Assessing wider impacts of mitigation options

Unlike the previous study, the current analysis has also explicitly assessed the wider socioeconomic and environmental impacts of a range of mitigation options. The need to conduct this form of analysis was recognised, although not performed explicitly in the LTMS study. As stated in the NCCRP, the intention is to promote mitigation measures that will make development more sustainable, both in socio-economic and environmental terms.

#### 6. Assessment of technical mitigation potential

The LTMS was framed as an exercise in assessing options for reducing emissions from a GWC to a RBS trajectory. The mitigation potential analysis does not seek to combine measures into this context. As stated in the NCCRP, the in-depth assessment of the mitigation potential, best available mitigation options, science, evidence and a full assessment of the costs and benefits for each significant sector and subsector of the economy will be used as an input to the process of identifying desired sectoral mitigation contribution through defining desired emission reduction outcomes. The focus of this study lies in the identification and analysis of technical mitigation potential in key sectors of the South African economy.

#### 4. Study Objectives

In order to meet Government's mitigation objectives, and in accordance with the DEA's mandate to oversee the implementation of the NCCRP, the overall objective of this report is to present a set of viable options for reducing GHG emissions in key economic sectors. To achieve this, the specific activities undertaken within the study are as follows:

## 1. Development of reference case projection of national GHG emissions into the future

Reference case projections of GHG emissions have been developed based on clearly-stated assumptions about the expected changes in the key sectors. Gross domestic product (GDP) growth estimates are based on the application of a macroeconomic growth model, using estimates of national economic growth that are consistent with the National Development Plan (NPC, 2012). The first reference case projection assumes an emissions trajectory without any mitigation, starting in 2000 and extending to 2050. A second reference case projection, starting in 2010 and also extending to 2050, accounts for the effects of existing policy and mitigation measures, as of the start date.

## 2. Identification and analysis of mitigation opportunities in key sectors of the economy

Mitigation options have been identified in each of the five key sectors selected by the TWG-M and for agreed subsectors. Mitigation options identified in each sector are based on stakeholder inputs and feedback via the sector task teams. Where insufficient data has been provided, options have been identified and abatement potential has been quantified based on the application of international benchmarks. Results, including the construction of MACCs, are presented for the short, medium and long-term (2020, 2030 and 2050).

#### 3. Socio-economic and environmental assessment of the identified mitigation options

In the study, an impact assessment for individual measures and an assessment of the wider macroeconomic impacts that would result from the implementation of a range of mitigation measures have been conducted.

#### Development of different scenarios which project the various options for reducing emissions in the short, medium and long term using the mitigation options identified above

These scenarios should be realistic, aligned with national development objectives and based on best available information. In accordance with the NCCRP, there is also a requirement to consider more than merely abatement potential and cost when prioritising mitigation interventions. Any mitigation measures which are selected should make development more sustainable, both in socio-economic and environmental terms. A multi-criteria decision analysis framework has been developed to allow a range of other criteria, including the broader socioeconomic and environmental impacts of individual mitigation options to form part of the process of selecting measures for implementation. A set of abatement pathways has been developed which illustrate how mitigation measures can be combined to construct emission reduction trajectories which take into account a broad range of factors including mitigation potential, cost and also the potential social and environmental impacts of the mitigation measures identified in the study.

#### 5. Sectors Covered in this Report

This report covers five key sectors of the South African economy. Within each of these key sectors, mitigation potential has been analysed for a number of sectors and subsectors identified in Table 2 below.

## Table 2: List of key sectors and sub-sectors covered in the mitigation potential analysis

| Key sector                                                   | Sector     | Subsector                      |  |  |
|--------------------------------------------------------------|------------|--------------------------------|--|--|
|                                                              | Power      | Electricity and heating        |  |  |
|                                                              |            | Petroleum refining             |  |  |
| Energy                                                       | Non-Power  | Other energy industries        |  |  |
|                                                              | INON-FOWEr | Coal mining                    |  |  |
|                                                              |            | Oil and gas                    |  |  |
|                                                              |            | Aluminium production           |  |  |
|                                                              | Metals     | Ferroalloys production         |  |  |
|                                                              |            | Iron and steel production      |  |  |
|                                                              | Minerals   | Cement production              |  |  |
|                                                              | 1*IInerais | Lime production                |  |  |
| Industry                                                     | Chemicals  | Chemicals production           |  |  |
|                                                              | Mining     | Surface and underground mining |  |  |
|                                                              | D 11       | Residential                    |  |  |
|                                                              | Buildings  | Commercial / institutional     |  |  |
|                                                              | Other      | Pulp and paper production      |  |  |
|                                                              | Road       | Road                           |  |  |
| Transport                                                    | Rail       | Rail                           |  |  |
|                                                              | Aviation   | Aviation                       |  |  |
| Waste                                                        | Waste      | Municipal waste                |  |  |
| Agriculture,<br>forestry<br>and other<br>land-use<br>(AFOLU) | AFOLU      | AFOLU                          |  |  |

#### 6. Report Structure

Figure 4 graphically illustrates the structure of the report. The current chapter (Chapter I) has provided an introduction to the current study in the context of previous assessments of national mitigation potential and the South African Government's strategic mitigation objectives under the NCCRP.

The report continues with two chapters which focus on methodological issues. Chapter II provides a summary of the approach to building reference case emissions projections into the future. A summary of the approach to identifying and analysing mitigation potential in key economic sectors, including the construction of marginal abatement cost curves, is presented in Chapter III. In both cases, the assumptions adopted in building reference case projections and estimating mitigation potential, are also presented.

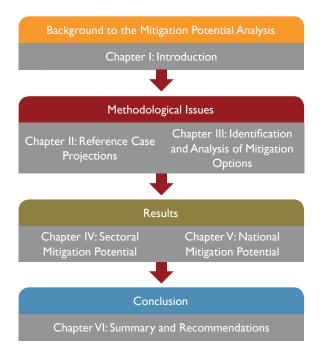



Figure 4: Structure of the Mitigation Potential Analysis report

Results from this study are presented on both a sectoral basis (Chapter IV) and on a national basis (Chapter V). The results include a summary of projections, abatement potential (including MACCs), an assessment of the wider socioeconomic and environmental impact of those options and a national abatement curve derived from the sectoral MACCs which are intended to reflect national mitigation potential. The report concludes with a summary and recommendations in Chapter VI.

In addition to the main report, additional detail on the methodology adopted in this study as well as the sectoral analyses conducted is available in a series of technical appendices. These appendices are:

- Appendix A: Approach and Methodology
- Appendix B: Macroeconomic Modelling
- Appendix C: Energy Sector
- Appendix D: Industry Sector
- Appendix E:Transport Sector
- Appendix F: Waste Sector
- Appendix G: Agriculture, Forestry and Other Land Use Sector.

## Chapter II: Reference Case Projections

#### 7. Projecting Economic Growth

Future GHG emissions were projected on the basis of projected future economic growth. A detailed inter-industry economic modelling framework was used as the basis for projecting economic growth in all sectors of the South African economy.

#### 7.1 The Inter-industry Forecasting Model

The Inter-industry Forecasting Model (INFORUM) was used to conduct the long-term forecasting of economic growth. The INFORUM modelling system is macroeconomic, dynamic and multi-sectoral. It depicts the behaviour of the economy in its entirety, that is, the interrelated, dynamic workings of all the major markets are accommodated. It therefore lends itself to projecting aggregate GDP and all its components, as well as the demand categories that determine GDP, instantaneously and dynamically.

The system is multi-sectoral and includes an input-output (I-O) table and accounting, which shows the magnitude and diversity of intermediate consumption within the context of the current economic structure. This allows the system to integrate intermediate input prices with sectoral price formation which ultimately determines overall price levels in the economy. This is done through the use of behavioural equations for final demand that depend on prices and output; and income functions that depend on production, employment and other variables.

The dynamic, macroeconomic and multi-sectoral nature of the INFORUM modelling system makes it well-suited for forecasting business-as-usual or reference cases. However, it shares certain limitations with other econometric models, since they are built mainly on historic information and the structure of the economy changes slowly over time. As a consequence, they are only ideally suitable for impact analysis over a medium term horizon. Over the long term this model, like others, is unlikely to adequately capture structural changes that might occur in the economy; for example, as a result of a shift from coal-based electricity generation to gas-based electricity generation. To take this into account, the intermediate production structure of the INFORUM model was adjusted in an attempt to take into account changes that the mitigation options will bring, more specifically those affecting the energy sector.

Another important feature of this macroeconomic multi-sectoral model is its bottom-up approach. In this approach the model mimics the actual workings of the economy, in that the macroeconomic aggregates are built up from detailed levels at the industry or product level, rather than first being estimated at the macroeconomic level and then simply distributed among sectors.

When conducting macroeconomic impact analyses, a variety of approaches exist to account for interactions within the economy. INFORUM models differ from computable general equilibrium (CGE) models in that they do not automatically take certain constraints into account. However, this has been accounted for by adjusting monetary and fiscal policy interventions through changing the interest rate, government spending and tax rates, to restore certain requirements, such as a specific percentage GDP deficit on the current account of the balance of payments.

Details of the INFORUM modelling system, and the approach to modelling future growth in the South African economy, are described in Technical Appendix A: Approach and Methodology. Results for the growth projections are shown in Technical Appendix B: Macroeconomic Modelling.

#### 7.2 Underlying Assumptions for the Purposes of Forecasting

It is important to note that the projection of growth in the economy is done over a very long period which tests the limits of any standard econometric forecasting model. The assumptions that are usually applied to modelling, such as monetary variables (that is interest rates and money supply) as well as short term price fluctuations, which are normally imperative for short- and medium-term forecasting are not as significant in this case. The long-term forecast is much more susceptible to structural developments in the South African economy, specifically regarding the potential of certain sectors to export over the long-term, such as the long-term positive potential of iron ore, magnetite, chrome, coal, and so on. It is also assumed that South Africa will play a much larger role in the African economy, and will be much less dependent on its traditional trading partners, such as Europe and the United States of America. This will also change the structure of our international trade, with South Africa becoming more dependent on exports of manufacturing goods and services; and less dependent on exports of primary commodities.

Specific information regarding Transnet's capital investment programme over the medium term was used to get an indication of the export potential of certain sectors. This information involves the increase of both harbour and railway capacity. The diminishing role that gold and diamonds will play in the future development of the economy was also taken into account. Furthermore, fundamental economic rules were built into the forecasting scenario, which included the following aspects:

- there should be a measure of balance on the current account of the balance of payments
- the ability to obtain foreign capital
- The growth of the world economy
- South Africa's population growth taking into account the negative effects of HIV and Aids.

#### 7.2.1 Targeted Level of Future Economic Growth

GHG emissions projections developed under this study are based on a targeted level of future economic growth based on the moderate growth rate defined by National Treasury and published in the 2012 Draft Integrated Energy Plan (DoE, 2013a). The projection of moderate growth assumes that the economy will grow steadily, with continued skills constraints and infrastructure bottlenecks in the short- to medium-term. The moderate growth scenario forecasts real GDP growth of 4.2% per annum over the medium-term (defined in the Draft Integrated Energy Plan as 2015–2020) and 4.3% per annum over the long-term (2021–2050), according to the 2012 Medium Term Budget Policy Statement (NT, 2012). Detailed modelling of sectoral growth and the resulting GDP growth rates that drive the emission projections are described in Technical Appendix B: Macroeconomic Modelling. Other modelling of the economic impacts of individual measures as well as modelling of the wider macroeconomic impacts of implementing a range of measures are described below as well as in the two technical appendices already mentioned.

The final demand projections for South Africa for the medium growth scenario are set out in Table 3 below. These projections form the basis for the production projections for the 46 subsectors in the INFORUM model. The forecasts by National Treasury for the Integrated Energy Plan (IEP) are also included for comparative reasons. The forecasts by Conningarth Economists are slightly lower than those by the National Treasury. A summary of production projections for the main economic sectors from the INFORUM model is shown in Table 4.

| GDP and final demand components                 | Growth rate per annum over period |      |      |           |           |           |           |  |  |
|-------------------------------------------------|-----------------------------------|------|------|-----------|-----------|-----------|-----------|--|--|
| (2012 constant prices)                          | 2013-2052                         | 2013 | 2014 | 2015-2022 | 2023-2032 | 2033-2042 | 2043-2052 |  |  |
| Final consumption expenditure by households     | 3.9                               | 2.2  | 3.8  | 3.6       | 3.8       | 4.2       | 4.3       |  |  |
| Final consumption expenditure by government     | 3.9                               | 4.4  | 5.1  | 3.7       | 3.8       | 4.0       | 4.0       |  |  |
| Gross capital formation:                        | 5.0                               | 1.6  | 3.7  | 4.8       | 5.0       | 5.3       | 5.3       |  |  |
| Exports of goods and services                   | 3.4                               | 2.8  | 3.0  | 3.3       | 3.3       | 3.5       | 3.6       |  |  |
| Imports of goods and services                   | 4.1                               | 2.4  | 3.5  | 4.1       | 4.1       | 4.2       | 4.3       |  |  |
| Total GDP (2012 Constant Prices)                | 4.0                               | 2.4  | 3.7  | 3.6       | 3.9       | 4.3       | 4.5       |  |  |
| National Treasury Forecast for the IEP<br>Model | 4.2                               | 3.0  | 3.8  | 4.2       | 4.3       | 4.3       | 4.3       |  |  |

#### Table 3: Final demand projections for the medium growth scenario (%)

| No | Sectors                                               | 2013-2052 | 2013 | 2014 | 2015-2022 | 2023-2032 | 2033-2042 | 2043-2052 |
|----|-------------------------------------------------------|-----------|------|------|-----------|-----------|-----------|-----------|
| T  | Agriculture, forestry and fishing                     | 2.5       | 2.2  | 2.9  | 2.3       | 2.2       | 2.6       | 2.8       |
| 2  | Mining and quarrying                                  | 3.7       | 1.9  | 3.0  | 3.4       | 3.3       | 3.9       | 4.3       |
| 3  | Manufacturing                                         | 4.1       | 1.5  | 3.5  | 3.8       | 3.8       | 4.4       | 4.6       |
| 4  | Electricity, gas and water                            | 3.5       | 2.2  | 3.4  | 3.3       | 3.2       | 3.7       | 3.9       |
| 5  | Construction                                          | 4.6       | 2.3  | 4.2  | 4.7       | 4.4       | 4.9       | 4.9       |
| 6  | Wholesale and retail trade;<br>hotels and restaurants | 4.1       | 2.3  | 3.7  | 3.9       | 3.8       | 4.3       | 4.5       |
| 7  | Transport, storage and com-<br>munication             | 4.1       | 2.8  | 4.1  | 4.1       | 3.8       | 4.3       | 4.4       |
| 8  | Finance, real estate and busi-<br>ness services       | 4.3       | 2.9  | 4.0  | 4.1       | 4.0       | 4.5       | 4.6       |
| 9  | General government services                           | 4.0       | 4.0  | 4.8  | 4.0       | 3.8       | 4.1       | 4.2       |
| 10 | Personal services                                     | 4.5       | 3.3  | 4.2  | 4.4       | 4.2       | 4.7       | 4.7       |
|    | Total Production                                      | 4.1       | 2.5  | 3.9  | 3.9       | 3.8       | 4.4       | 4.5       |

Table 4: Production projections for the main economic sectors for the medium growth scenario (%)

#### 8. Building Reference Case Projections

The study has produced projections to 2050 for all GHGs from all sectors included in the Greenhouse Gas Inventory for South Africa (GHGI). Two projections have been produced:

- A reference case projection: This is a projection of emissions from 2000 to 2050 assuming that no climate change mitigation actions have taken place since 2000. Thus, for the period from 2000 to 2010 it does not follow the actual observed path of emissions but the path that emissions would have taken if none of the climate change mitigation actions implemented in this period had taken place. The UNFCCC refers to this as a 'without measures' (WOM) projection (UNFCCC, 2000).
- A 'with existing measures' (WEM) projection: This projection incorporates the impacts of climate change mitigation actions including climate change policies and measures implemented to date. For the period 2000 to 2010 the projection follows the actual path of observed emissions.

The projections were produced using a bottom-up methodology. Models were produced for each sector, and are described fully in the appendices for each sector. Overall the projections are consistent with the moderate growth rate for the economy and with growth rates for particular economic sectors as defined in the macroeconomic modelling. The methodology used in the models is consistent with that used in the GHGI, and historic emissions in the period from 2000 to 2010 are taken from the latest (draft) version of the GHGI (DEA, 2013) for the WEM projection, updated in some cases by more recent information from industry.

Common key assumptions for the projections are the following.

 A moderate growth rate for the economy, with growth rates for particular economic sectors as defined in the macroeconomic modelling (see Section 7.2). The governing assumptions for macroeconomic growth are based on the moderate growth target as defined by National Treasury and published in the 2012 Draft Integrated Energy Plan (DoE, 2013a).

- The growth rate for an industrial sector is used as the production growth rate for the sector, which in turn drives projected fuel use and hence emissions. The only exception to this is modelling in the refinery and the other energy industries subsectors where increases in production are linked to the demand for liquid fuel, and upstream oil and gas, where growth is related to expected development of gas fields.
- Emissions factors for fuels and processes are taken from the latest (draft) version of the GHGI (DEA, 2013).
- Historic emissions in the period from 2000 to 2010 are taken from the latest (draft) version of the GHGI for the WEM projection, unless more recent data was available from industry. The main revisions are in the power sector, where historical fuel consumption (and hence emissions) is calculated based on the net calorific value of coal provided by Eskom, rather than the net calorific value used in the GHGI. This results in estimates of historic emissions from the power sector that are about 20% lower than estimates in the (draft) GHGI.
- Emissions sources which are not included in the current GHGI were not included in projections due to a lack of data on which to base projections. An exception is upstream oil and gas activities, where information from industry allowed this to be estimated.
- Estimates of GHG abatement, resulting from actions specifically identified as being undertaken for the purposes of climate change mitigation, are added to the WEM projection to produce the WOM projection.
- The fuel activity data used in the draft GHGI was used as the primary source of energy data, as it is considered by the DEA to more accurately reflect sectoral consumption than data in the Energy Balance (DoE, 2013b). Electricity consumption was taken from the energy balance dataset as no other source of information was available. The energy balance was also used to provide a more detailed breakdown of fuel use in some specific industries.

For further detail regarding the projection of GHG emissions, please refer to Section 1 in Technical Appendix A: Approach and Methodology.

Box I below outlines how the impacts of climate change mitigation actions, which have been implemented since 2000, were assessed in each of the key sectors. Further details are given in the relevant sector appendices.

#### Box 1: Accounting for Early Mitigation Action when Projecting Emissions

Mitigation actions implemented in each sector between 2000 and the present were determined through a review of climate change policies and measures, and through consultation with industry. For some actions, the impact on the emissions or energy savings achieved was assessed based on information provided directly by industry or the relevant implementing bodies. In some cases, for mitigation measures in industry and the energy sector, the emissions reductions were calculated based on the levels of uptake of the measure in 2010 which were agreed with industry. Unless specific data on the timing of implementation was available, a linear implementation between 2000 and 2010 was assumed. For the power sector and transport sector, policies which have been adopted only have an impact post 2010, but are included in the assessment as the policy itself has already been adopted.

The main policies and measures which were identified in each sector are shown in Table 5. The estimated savings achieved from each measure are shown in Table 6.

| Sector    | Subsector                  | Existing mitigation actions                                                                                                                                                                                       |
|-----------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | Power sector               | Committed new build under the Integrated Resource Plan (IRP) e.g. introduction of renewables (see DoE, 2011 Table 5).                                                                                             |
| [norm/    | Oil refining               | Improved process heater efficiency, use of refinery fuel gas, waste heat boiler, improved process control.                                                                                                        |
| Energy    | Coal mining                | Improved efficiency of mine haul and transport operations, general energy efficiency mea-<br>sures, and onsite clean power generation                                                                             |
|           | Other energy<br>industries | Conversion of feedstock from coal to gas, compressor upgrades and use of open cycle gas turbines for generation.                                                                                                  |
|           | Aluminium                  | Improved process control and general energy efficiency measures, including energy efficiency utility systems.                                                                                                     |
|           | Chemicals                  | Several general energy efficiency measures and process related measures for nitric acid, ammonia and carbon black.                                                                                                |
|           | Ferroalloys                | Best available production techniques; use of closed type furnaces, general energy efficiency measures.                                                                                                            |
|           | Iron and steel             | Improved process control and general energy efficiency measures, including energy efficient utility systems and improved heat exchanger efficiencies.                                                             |
| Industry  | Lime                       | Installation of shaft preheaters, use of alternative fuels, improved process control and general energy efficiency measures, including energy efficient utility systems and improved heat exchanger efficiencies. |
|           | Mining                     | Improved efficiency of mine haul and transport operations, general energy efficiency mea-<br>sures, and onsite clean power generation.                                                                            |
|           | Paper                      | Improved process control, use of biomass, energy recovery systems, and general energy efficiency measures, including energy efficient utility systems.                                                            |
|           | Buildings                  | ESKOM demand management programme (includes roll out of energy efficient lighting and national solar water heating programme).                                                                                    |
| Transport | Aviation                   | Implementation of an international voluntary sectoral agreement to reduce net $\rm CO_2$ emissions.                                                                                                               |
| Waste     | Landfill sites             | Landfill gas recovery and generation at several sites.                                                                                                                                                            |

#### Table 5: Existing policies and measures assessed

## mitigation REPORT

Box 1: Accounting for Early Mitigation Action when Projecting Emissions - continued

|           | 1    | 0,1  |      | · · · · · · |      |
|-----------|------|------|------|-------------|------|
|           | 2010 | 2020 | 2030 | 2040        | 2050 |
| Energy    | 25.1 | 34.8 | 43.2 | 71.8        | 88.6 |
| Industry  | 0.0  | 0.0  | 0.0  | 0.0         | 0.0  |
| Transport | 0.0  | 0.8  | 2.3  | 5.6         | 10.9 |
| AFOLU     | 0.0  | 0.0  | 0.0  | 0.0         | 0.0  |
| Waste     | 0.4  | 0.4  | 0.4  | 0.4         | 0.4  |
| Total     | 26.8 | 36.0 | 46.0 | 77.9        | 99.9 |

Table 6: Estimates of reductions to be achieved with existing policies and measures, per key sector (MtCO<sub>2</sub>e)

Note: Reductions associated with lower electricity demand in end use sectors are shown under the energy sector in Table 6. More detailed breakdowns of savings by sector are given in the individual sector appendices.

#### 8.1 Emissions with No Mitigation

Projections of all GHGs in the economy are shown for the reference case WOM projection in Table 7 and Figure 5. The projections show that if no climate change mitigation measures had been implemented then emissions in 2010 would have been 28% higher (at 555,151 ktCO<sub>2</sub>e) than in 2000 (432,467 ktCO<sub>2</sub>e). Projected emissions continue to rise steadily, due largely to the assumed economic growth<sup>2</sup>, reaching 903,700 ktCO<sub>2</sub>e by 2030, and 1,692,471 ktCO<sub>2</sub>e by 2050,

almost four times more than emissions in 2000. The largest contributor to emissions is the power sector, where carbon intensity is high, as it is predominantly based on coal fired generation. In 2010, together with other energy related sectors it accounted for 58% of emissions. If emissions from the power sector are allocated to end users of electricity (Figure 6 and Table 8), then the industry sector, which includes buildings, dominates emissions accounting for 63% of emissions in 2010 (rising to 76% by 2050).

2. The moderate growth scenario forecasts real GDP growth of 4.2% per annum over the medium-term (defined in the draft Integrated Energy Plan as 2015–2020) and 4.3% per annum over the long-term (2021–2050)

|           | 2000    | 2010    | 2020    | 2030    | 2040      | 2050      |
|-----------|---------|---------|---------|---------|-----------|-----------|
| Energy    | 251,718 | 323,174 | 410,788 | 537,301 | 741,938   | I,042,549 |
| Industry  | 78,265  | 3,  6   | 149,182 | 199,296 | 281,609   | 409,578   |
| Transport | 35,481  | 47,715  | 61,070  | 80,411  | 106,678   | I 36,684  |
| AFOLU     | 56,801  | 54,311  | 53,268  | 52,506  | 52,216    | 52,159    |
| Waste     | 10,202  | 16,836  | 24,999  | 34,186  | 43,251    | 51,502    |
| Total     | 432,467 | 555,151 | 699,307 | 903,700 | 1,225,692 | 1,692,471 |

Table 7: National GHG emissions under the reference case WOM projection (2000–2050) (ktCO,e)

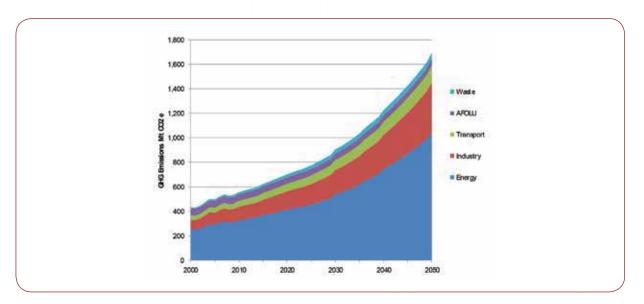



Figure 5: National GHG emissions under the reference case WOM projection, showing a breakdown per sector (2000–2050)

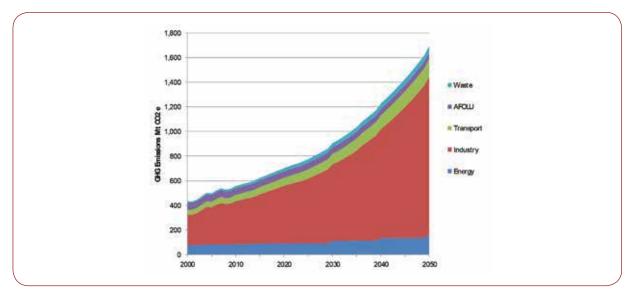
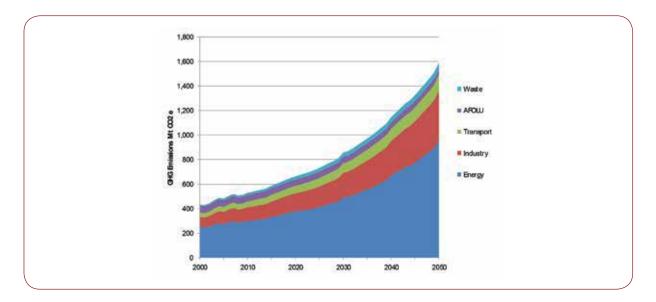



Figure 6: National GHG emissions under the reference case WOM projection, showing a breakdown per sector (2000–2050), with electricity emissions allocated to end use sectors

## mitigation REPORT


Table 8: National GHG emissions under the reference case WOM projection (2000–2050) (ktCO<sub>2</sub>e), with electricity emissions allocated to end use sectors

|           | 2000    | 2010    | 2020    | 2030    | 2040      | 2050      |
|-----------|---------|---------|---------|---------|-----------|-----------|
| Energy    | 75,072  | 81,560  | 86,138  | 108,306 | 130,063   | 154,436   |
| Industry  | 249,126 | 351,501 | 469,854 | 623,243 | 887,008   | I,289,562 |
| Transport | 41,266  | 50,943  | 65,048  | 85,459  | 113,153   | 44,8 2    |
| AFOLU     | 56,801  | 54,311  | 53,268  | 52,506  | 52,216    | 52,159    |
| Waste     | 10,202  | 16,836  | 24,999  | 34,186  | 43,25 I   | 51,502    |
| Total     | 432,467 | 555,151 | 699,307 | 903,700 | 1,225,692 | ۱,692,471 |

#### 8.2 Emissions with Existing Measures Only

The WEM projection (Figure 7 and Table 9) shows climate change mitigation measures which have already been implemented, together with the impact of existing climate change policies and measures. Here total GHG emissions are forecast to be 25,479 ktCO<sub>2</sub>e lower than in the WOM scenario in 2010 and 99,866 ktCO<sub>2</sub>e lower in 2050. The reduction in 2010 is mainly due to measures already implemented by

industry. The reduction in 2050 is predominantly due to some decarbonisation of the power sector as a result of commitments by the power sector under the Integrated Resource Plan for Electricity 2010–2030 (IRP) (DoE, 2011). Figure 8 shows the breakdown of emissions when power sector emissions are allocated to end use sectors. As in the WOM projection, emissions are dominated by the industry sector, as it is the principal user of electricity.





| Table 9: | National GHG emissions | under the reference case | WEM projection | (2000–2050) (ktCO) | ,e) |
|----------|------------------------|--------------------------|----------------|--------------------|-----|
|----------|------------------------|--------------------------|----------------|--------------------|-----|

|           | 2000    | 2010    | 2020    | 2030    | 2040      | 2050      |
|-----------|---------|---------|---------|---------|-----------|-----------|
| Energy    | 251,718 | 298,109 | 375,994 | 494,066 | 670,107   | 953,956   |
| Industry  | 78,265  | 3,  6   | 149,182 | 199,296 | 281,609   | 409,578   |
| Transport | 35,481  | 47,715  | 60,242  | 78,106  | 101,066   | 125,825   |
| AFOLU     | 56,801  | 54,311  | 53,268  | 52,506  | 52,216    | 52,159    |
| Waste     | 10,202  | 16,421  | 24,584  | 33,771  | 42,836    | 51,087    |
| Total     | 432,467 | 529,672 | 663,270 | 857,745 | 1,147,834 | 1,592,605 |

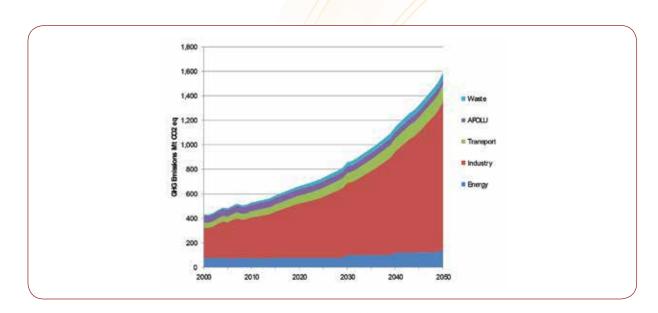



Figure 8: National GHG emissions under the reference case WEM projection, showing a breakdown per sector (2000–2050), with electricity emissions allocated to end use sectors

| Table 10: National GHG emissions under the reference case WEM projection | (2000-2050) (ktCO <sub>2</sub> e), with electricity emissions allocated to end |
|--------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| use sectors                                                              |                                                                                |

|           | 2000    | 2010    | 2020    | 2030    | 2040      | 2050      |
|-----------|---------|---------|---------|---------|-----------|-----------|
| Energy    | 75,072  | 73,074  | 76,935  | 98,779  | 119,644   | 143,783   |
| Industry  | 249,126 | 334,923 | 444,346 | 589,713 | 826,055   | 1,212,168 |
| Transport | 41,266  | 50,943  | 64,137  | 82,977  | 107,084   | 133,408   |
| AFOLU     | 56,801  | 54,311  | 53,268  | 52,506  | 52,216    | 52,159    |
| Waste     | 10,202  | 16,421  | 24,584  | 33,771  | 42,836    | 51,087    |
| Total     | 432,467 | 529,672 | 663,270 | 857,745 | 1,147,834 | I,592,605 |

16

# 9. Sensitivity Analysis

A sensitivity analysis was carried out based on a higher and lower rate of economic growth. These growth assumptions were again based on the inputs provided by National Treasury. Following the 2012 Budget forecast (National Treasury, 2012), the low-growth scenario assumed real GDP growth of 3.8% per annum over the medium and long-term. The main drivers of the low growth over the period were the assumptions of continued skills constraints, infrastructure bottlenecks and low global growth. The high growth scenario assumed an improved domestic outlook and recovery from the financial crisis with stronger commodity prices, reduced infrastructure bottlenecks and higher global growth. Real growth was assumed to be 4.8% per annum over the medium-term and 5.4% per annum over the long-term

The changes in growth were used to derive high and low growth emissions projections for the energy, industry and waste sectors, as detailed in Appendix A. As projections for the transport and AFOLU sectors are based on forecasts of transport demand, and agricultural production made by other studies, it was outside the scope of this study to update these projections.<sup>3</sup>

Figure 9 shows projections under high and low economic growth compared to the medium economic growth scenario (for the WEM scenario). Figure 10, Figure 11 and Table 11 give a sectoral breakdown of emissions under the low and high economic growth scenarios. Overall, with lower economic growth, emissions are projected to be 15% (232,079 ktCO<sub>2</sub>e) lower than in the medium growth scenario by 2050, reducing the growth in emissions between 2010 and 2050 by 44%. This is driven by lower emissions in the industry and energy sectors. Emissions from industry are 23% (95,548 ktCO<sub>2</sub>e) lower under the low growth scenario in 2050 and emissions from the energy sector 14% (135,509 ktCO<sub>2</sub>e) lower: Emissions from the waste sector are only 2% lower in the high GDP per capita rates forecast for 2050, as waste generation per capita shows little increase with rises in GDP per capita.

If economic growth were to be higher than the moderate growth rate assumed for the WEM projection, then emissions are projected to be 18% (289,718 ktCO<sub>2</sub>e) higher in 2050 than under a medium growth scenario, increasing the growth in emissions between 2010 and 2050 by 55% to 355%. Additional emissions come from the industry sector (133,306 ktCO<sub>2</sub>e) which grows at a faster rate, and from the energy sector (155,983 ktCO<sub>2</sub>e), where emissions from the power sector increase to meet additional electricity demand from the industry sector:

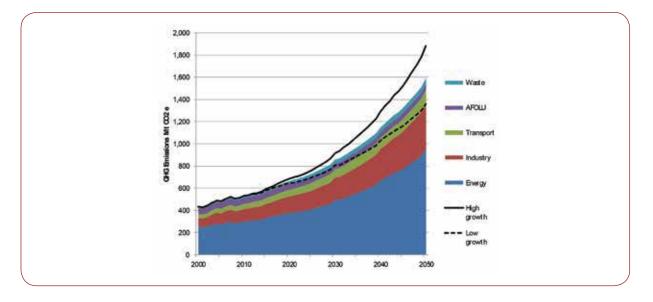



Figure 9: National GHG emissions under the reference case WEM projection, showing high and low growth compared to medium growth (2000–2050)

3. Transport and AFOLU are projected to account for 8% and 3% of total emissions in 2050 under the WEM scenario. Exclusion of these sectors from the sensitivity analysis means that emissions in the high growth scenario are likely to be underestimated by a small amount – probably no more than a few percent. The emissions under the low growth scenario are similarly likely to be overestimated by a small amount.

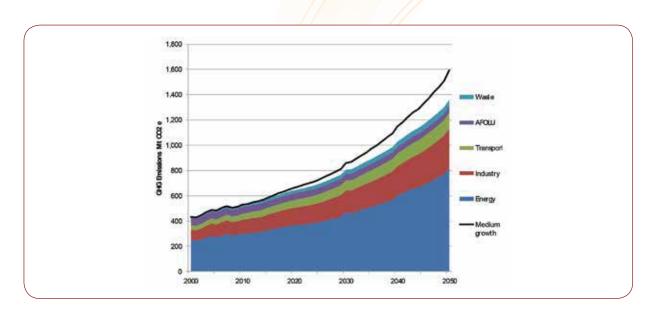



Figure 10: National GHG emissions under the WEM projection, with low economic growth (2000–2050)

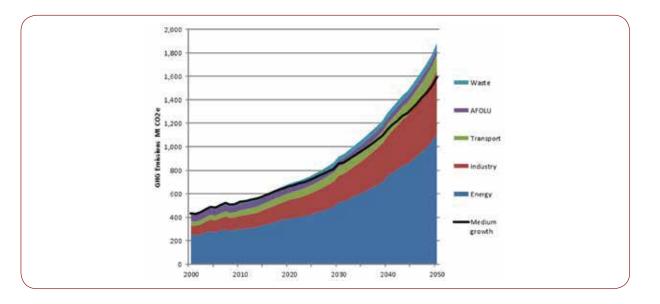



Figure 11: National GHG emissions under the WEM projection, with high economic growth (2000–2050)

| Table 11: 1 | National G | HG emissions u | nder the WEM projection | (2000-2050) (ktCO | e) for low and high economic growth |
|-------------|------------|----------------|-------------------------|-------------------|-------------------------------------|
|-------------|------------|----------------|-------------------------|-------------------|-------------------------------------|

|                      | 2020    | 2030    | 2040      | 2050      |
|----------------------|---------|---------|-----------|-----------|
| Low economic growth  |         |         |           |           |
| Energy               | 365,256 | 467,470 | 602,590   | 818,447   |
| Industry             | 140,551 | 175,115 | 231,045   | 314,030   |
| Transport            | 60,242  | 78,106  | 101,066   | 125,825   |
| AFOLU                | 53,268  | 52,506  | 52,216    | 52,159    |
| Waste                | 24,404  | 33,000  | 41,850    | 50,064    |
| Total                | 643,720 | 806,197 | 1,028,766 | 1,360,526 |
| High economic growth |         |         |           |           |
| Energy               | 388,652 | 527,038 | 748,533   | 1,109,939 |
| Industry             | 157,420 | 225,076 | 343,547   | 542,884   |
| Transport            | 60,242  | 78,106  | 101,066   | 125,825   |
| AFOLU                | 53,268  | 52,506  | 52,216    | 52,159    |
| Waste                | 24,485  | 33,887  | 43,166    | 51,515    |
| Total                | 684,066 | 916,613 | 1,288,527 | 1,882,323 |

# Chapter III: Identification and Analysis of Mitigation Potential

This chapter outlines the approach to identifying and analysing mitigation potential and provides clarity on the main assumptions used in that process. The chapter covers the following sections:

- Section 10: Identifying Mitigation Potential
- Section 11: Quantifying Mitigation Potential
- Section 12: Developing Abatement Pathways

Please refer to Technical Appendix A: Approach and Methodology and to the detailed technical appendices for key sectors for further details on the approach and methodology followed in each sector.

# 10. Identifying Mitigation Potential

For the purposes of the analysis of mitigation potential presented in the report, a mitigation opportunity is defined as an anthropogenic intervention to reduce the sources or enhance the sinks of GHGs. The Kyoto Protocol deals with the following six GHGs, which are the main focus for this study (United Nations, 1998):

- carbon dioxide  $(CO_2)$
- methane (CH<sub>4</sub>)
- nitrous oxide (N<sub>2</sub>O)
- hydrofluorocarbons (HFCs)
- perfluorocarbons (PFCs)
- sulphur hexafluoride  $(SF_4)$

A source is defined as any process, activity or mechanism that releases a GHG, an aerosol or a precursor of a GHG or aerosol into the atmosphere (IPCC, 2007). In this study, only South African sources of GHG emissions have been considered. A sink is defined as any process, activity or mechanism that removes a GHG from the atmosphere.

Typically, mitigation measures are technologies (that is, a piece of equipment or a technique for performing a particular activity), processes, and practices, which, if employed, would reduce GHG emissions below anticipated future levels when compared to the status quo or an existing counterfactual technique normally employed. The mitigation potential of a measure is the quantified amount of GHGs than can be reduced, measured against a baseline (or reference). The use of the term potential is consistent with the IPCC's Fourth Assessment Report, where it was used to report the quantity of GHG mitigation compared with a baseline or reference case that can be achieved by a mitigation option with a given cost (per tonne) of carbon avoided over a given period (IPCC, 2007). Mitigation potential is represented in equivalent tonnes of carbon dioxide (tCO,e).

Technological potential is the amount by which it is possible to reduce GHG emissions or improve energy efficiency by implementing a technology or practice that has already been demonstrated. Economic potential is the portion of technological potential for GHG emissions reductions or energy efficiency improvements that could be achieved cost-effectively through the creation of markets, reduction of market failures, or increased financial and technological transfers.

The mitigation potential presented in the report is defined as technological potential and not economic potential.

Mitigation potential for South Africa has been identified following a bottom-up sectoral approach for the 2010 to 2050 time period, outlined as follows:

- First, for each sector (and defined subsectors), a set of possible mitigation measures has been identified. This has involved significant research, literature review, data gathering, preparation of a list of mitigation options, consultation with South African sector experts and stakeholders, and shortlisting.
- Second, for each measure, the technological mitigation potential and marginal abatement cost was quantified. This involved analysis, gathering of international benchmark information and further consultation with South African sector experts and stakeholders.
- Third, the measures were then grouped (at national, sector or subsector level) and the mitigation potential of each group of measures was summed to give the overall mitigation potential.
- Finally, the groups of measures (national, sector or subsector) were ranked based on their marginal abatement cost and presented in the form of MACCs.

The mitigation potential of the identified measures was estimated on an annual basis and presented for 2020, 2030 and 2050. The total mitigation potential over the entire duration from 2010 to 2050 was also calculated.

### 10.1 Identification of Mitigation Measures

GHG emissions mitigation opportunities for each of the five key sectors were identified and quantified following the process described below.

- Development of a long list: Based on literature review and desktop research of international GHG mitigation best practice technologies and best available techniques (BAT), a long list of mitigation options was prepared for each key sector (and the stipulated sectors and subsectors).
- Refinement of a short list: The long list was disseminated to sector task teams and to the TWG-M and feedback was gathered on the applicability and potential of each measure. A short list of mitigation opportunities was then selected based on this feedback.
- Further quantitative data gathering: The data parameters required to construct the MACCs, including the abatement potential and costs, were then gathered using international benchmarks and best practice estimates. Questionnaires for key industry subsectors were disseminated to the TWG-M members, including all of the quantified measures, to verify the parameters based upon sector expertise from South Africa, and to allow the TWG-M members to provide quantitative information on additional mitigation activities.
- Final list of measures: The final list of data was then prepared, incorporating final feedback from the TWG-M.

For each measure, the data parameters required to calculate the GHG abatement potential (in tonnes of  $CO_2e$ ) and the marginal abatement cost (MAC), (in rand (R) per tonne of  $CO_2$  abated) over the 2010–2050 analysis period, have been gathered, quantified based upon benchmark documentation and analysed in consultation with TWG-M sector experts.

The final list of identified mitigation measures, together with abatement potential and marginal abatement cost are listed in Table 32 below. Identification numbers shown in the legends of the marginal abatement cost figures presented below may be used to look up details in Table 32.

## 10.2 Development of Marginal Abatement Cost Curves

Marginal abatement cost curves were developed at national, key sector and subsector level as snapshots for 2020, 2030 and 2050, presenting the annual technical mitigation potential relative to the reference WEM emissions projection. These MACCs show the costs and potential for emissions reduction from different measures or technologies, ranking them from the cheapest to the most expensive to represent the marginal costs of achieving incremental levels of emissions reduction. Relative to the reference WEM emissions projection, the MACC shows the GHG mitigation abatement potential for each abatement technology along the horizontal x-axis (in tonnes of  $CO_2$ e abated) and the marginal abatement cost of implementing the measures along the vertical y-axis (in R per tonne of  $CO_2$ e abated).

A bottom-up sectoral approach has been taken in developing the MACCs and determining the overall sectoral and national level technical mitigation potential. Generally, the sectoral mitigation potential (for 2020, 2030 and 2050) for each measure has been estimated compared to the reference WEM emissions projection for each key sector (and specified subsectors), based upon an assessment of three key percentage factors:

- Emissions reduction potential: Percentage reduction of applicable sector reference emissions (fugitive, process, direct emissions from fuel combustion and/or indirect electricity emissions).
- Applicability: The percentage of the total reference sector emissions that the mitigation measure's reduction potential can be applied to.
- Sector uptake/penetration: The percentage of the sector that implements the mitigation measure.

The sector-wide mitigation potential is then simply estimated by multiplying the reference emissions by the three factors above for each measure and then adding the mitigation potential of all measures identified for the sector.

The approach taken and methodology applied in developing the MACCs for the key sectors is described in detail in Technical Appendix A: Approach and Methodology. The MACCs have been constructed using a computer-based Microsoft Excel<sup>™</sup> spreadsheet. A summary of the key methodological assumptions affecting GHG mitigation potential and the marginal abatement cost made is described below.

### 10.2.1 Strengths and Weaknesses

A MACC is a tool for understanding the level of emissions abatement that can be delivered by specific technical and behavioural measures at a given point in time. It also provides an understanding of the relative costs of the measures. It is therefore useful for ranking investment decisions, or providing guidance on which measures should be considered for specific policy interventions. A MACC curve can also be used to help assess the cost of delivering a specific emissions abatement target, along with the basket of measures that need to be implemented to meet the target. However, the information in a MACC represents a static snapshot at a given point in time. The estimates of abatement potential are underpinned by a scenario about how emissions will develop in the respective sector over time, as well as the availability and cost of measures available to reduce emissions at that point in time. This means that the results from a MACC analysis are tied to certain underpinning assumptions. In this way MACC models are not as dynamic as other modelling tools. This can also present challenges when attempting to consider sectoral interdependencies. For example, mitigation actions taken in one sector (such as power generation) will have a knock-on effect in other sectors (such as energy prices, and emissions factors for power generation).

Underpinning a MACC are detailed data on the cost and abatement potential of the individual measures, assumptions with respect to the uptake of those measures over time (in response to existing policies and other drivers) and adjustments for interaction among measures. For policy-making purposes, the values used to generate the MACC are typically based on estimates of the average cost and the abatement potential of the measures in a given sector. In these circumstances, the MACC does not necessarily provide a precise estimate of the cost or abatement of a given measure in a specific circumstance or for a specific entity. However, it does provide a reasonable approximation of the marginal abatement cost of specific measures for the sector as a whole.

For certain measures the difference in the cost and/or the abatement potential may vary significantly from one setting to the next depending upon, for example, the age of the existing equipment, usage levels and fuel mix. Where more accurate data is required, the cost estimates should be repeated for the particular site or location in question. The output from this exercise is a site-specific MACC.

Further discussion of the MACC methodology developed for this study is provided in Section 5.3 of Technical Appendix A: Approach and Methodology.

#### 10.2.2 Estimating Mitigation Potential

The GHG mitigation abatement potential for each abatement technology is displayed along the horizontal x-axis of the MACC (in tonnes of CO<sub>2</sub>e abated).

The annual technical mitigation potential for each measure is calculated on a sectoral basis for each year between 2010 and 2050. The mitigation potential is measured based on the WEM reference emissions projection (for fugitive emissions, process emissions, direct fuel emissions and/or indirect electricity related emissions, as defined by the emissions sources of each key sector).

Generally speaking, the mitigation potential for each identified mitigation measure, in each key sector, has been estimated based upon data parameters gathered and the formulas defined below, according to the emissions sources of each sector. The data parameters stipulate the emissions reduction potential and applicability (that is, fugitive, process, direct fuel and/or indirect related), fuel saving potential and applicability, and/or electricity saving potential and applicability, and the assumed sector uptake.

| Sector Mitigation Potential ( $tCO_2$ e/year) =          | Fugitive/Process Emissions Reduction (tCO <sub>2</sub> e/year) +      |
|----------------------------------------------------------|-----------------------------------------------------------------------|
|                                                          | Direct Fuel Emissions Reduction (tCO $_2$ e/year) +                   |
|                                                          | Indirect Electricity Emissions Reduction (tCO <sub>2</sub> e/year)    |
| The fugitive emissions reduction potential for a         | a given mitigation measure is calculated using the following formula: |
| Fugitive Emissions Reduction (tCO <sub>2</sub> e/year) = | Reference Fugitive Emissions (tCO $_2$ e/year) x                      |
|                                                          | Fugitive Emissions Reduction Potential (%) x                          |
|                                                          | Applicability (%) × Sector Uptake (%)                                 |

The process emissions reduction potential for a given mitigation measure is calculated using the following formula:

| Process Emissions Reduction (tCO <sub>2</sub> e/year) = | Reference Process Emissions (tCO <sub>2</sub> elyear) $x$ |
|---------------------------------------------------------|-----------------------------------------------------------|
|                                                         | Process Emissions Reduction Potential (%) $\times$        |
|                                                         | Applicability (%) x Sector Uptake (%)                     |

The fuel emissions reduction potential for a given mitigation measure is calculated using the following formula:

Direct Fuel Emissions Reduction (tCO<sub>2</sub>elyear) =

Reference Direct Fuel Emissions (tCO<sub>2</sub>e/year) × Fuel Energy Saving Potential (%) × Applicability (%) × Sector Uptake (%)

The indirect electricity emissions reduction potential of a given mitigation measure is calculated using the following formula:

Indirect Emissions Reduction  $(tCO_2e/year) =$ 

Reference Indirect Electricity Emissions (tCO<sub>2</sub>e/year) × Electricity Saving Potential (%) × Applicability (%) × Sector Uptake (%)

The emissions reduction potential and applicability, fuel saving potential and applicability, and electricity saving potential and applicability for each measure have been selected based upon benchmark information and/or in consultation with the TWG-M sector experts. The selected parameters for all mitigation measures identified in each sector together with relevant assumptions are presented in detail in the technical appendices.

The selected level of sector uptake for each measure determines the extent to which a measure is available and implemented across the sector and impacts the overall mitigation potential.

# 10.2.2.1 Mitigation measures availability

A MACC may include a wider range of abatement measures, including established existing technologies, and less well established emerging technologies. Certain emerging technologies might not be available for application until some point in the future. This is reflected in the assumptions that are made about the technology available at a given point in time.

Drawing on published research, the availability of each of the technologies over the assessment period has been defined. For each technology the availability has been allocated to the beginning of one of the following 10-year periods: 2010, 2020, 2030 and 2050.

#### 10.2.2.2 Sector uptake and market penetration

The extent to which a specific abatement measure can be implemented at a given point in time in the future is influenced by the measure's availability and its market penetration rate. The penetration rate essentially describes the rate at which the measure could realistically penetrate the market. It therefore provides a limit on the abatement potential that can be delivered by a specific measure. For new technologies, this rate is typically assumed to follow existing investment cycles. The selected levels of uptake for each measure are presented in the technical appendices. These levels of uptake have been selected in consultation with the TWG-M sector experts.

### 10.2.3 Estimating the Marginal Abatement Cost

The marginal abatement cost (MAC) is an indicator of the cost required to implement a given technical measure to abate a unit of  $CO_2e$ . The MAC describes the net cost of implementing a measure by comparing the capital and operational costs against potential energy cost savings (or additional energy overheads) per tonne of abatement. The MAC is shown along the vertical y-axis of the MACC (in cost per tonne of  $CO_2e$  abated).

The marginal abatement cost for a measure in a given year is defined as follows:

MAC (R/tCO<sub>2</sub>e) = Net Annual Cost (R/year) / Total Emissions Reduction (tCO<sub>2</sub>e/year)

The net annual cost (NAC) for a measure in a given year is the sum of the equivalent annual cost (EAC) and the annual operation and maintenance cost (Opex) minus the energy cost saving. The NAC is defined as follows:

NAC (R/year) = Equivalent Annual Cost (R/year) + Annual Operation & Maintenance Cost (R/year) – Energy Cost Saving (R/year)

The equivalent annual cost (EAC) for a given measure is defined as the capital investment cost (Capex) of the technical measures annualised over the measure's lifetime, applying an assumed discount rate. This can be calculated by taking the negative value returned by the PMT function in MS Excel<sup>TM</sup>.

Capex is annualised because the measures within the MACC may have different lifetimes and, therefore, this allows the mar-

ginal abatement costs of different measures to be compared and ranked accordingly. The Capex is based on the estimated overnight capital cost<sup>4</sup> for the measure in the given year. The Capex, Opex and lifetime were largely based on benchmark information, which was cross-checked with the sector task team representatives. In cases where more accurate costing information has been made available by the TWG-M, this was used instead. The selected Capex, Opex and lifetimes for all of the mitigation measures identified in each energy sector are displayed in the relevant technical appendices.

# 10.2.3.1 Other cost assumptions

The energy cost saving (R/year) for a given measure in a given year is based upon the estimated annual fuel and/or electricity saving (GJ/year) multiplied by the assumed price for that year (in R/GJ). The assumed fuel and electricity costs for the period 2010 to 2050 are presented and explained in Box 2.

# Box 2: Energy Price Assumptions

The assumed fuel prices for 2010, 2020, 2030 and 2050 used in the mitigation analysis and the development of the non-power energy, industry and transport sector MACCs are presented in Table 12. The prices are based on the supply costs of various indigenous production of primary fossil and renewable energy and on import prices from the Appendix I. Primary Energy Supply Sector - Reference Case Assumptions of version 3.2 of the SATIM Energy Model Methodology Appendices (ERC, 2013) provided in R/GJ (with the exception of metallurgical coke, petcoke and refinery fuel gas which are not specified in the SATIM model). This source was considered to be the most comprehensive, up-to-date and consistent data source for South African fuel prices on which to base the fuel price assumptions. The assumed prices are net prices and do not include tax or additional local distribution charges.

Exceptionally, the 2010 base year price for metallurgical coke and petcoke is based upon average market price information (Resource-Net, 2011). The refinery fuel gas (RFG) production cost is based on the SATIM energy model crude oil cost, and the assumption that 5% of feed crude stock is converted into RFG, and RFG production costs are 2.5% of total refinery product energy. The 2020, 2030 and 2050 prices are all extrapolated based upon the SATIM growth trend for crude oil.

In reality, the fuel prices paid by different businesses and industry subsectors may vary depending on several factors (for example, amount of fuel purchased, supply contract terms and so on). As no other single and consistent information source was available for fuel prices paid in the non-power energy and industry subsectors, the SATIM energy model and DoE energy prices were applied.

The electricity price for 2010 and projection up to 2050 is based upon the anticipated average electricity price path included in the Integrated Resource Plan (IRP) for Electricity 2010–2030 (DoE, 2011 Figure 4). This was considered to be the most appropriate data source on which to base the electricity price assumption and projection and is consistent with the power sector mitigation analysis assumptions.

4. The lump sum cost disregarding interest for a construction project.

|                            | Units | Source                    | Note                                                                                    | 2010 | 2020 | 2030 | 2040 | 2050 |
|----------------------------|-------|---------------------------|-----------------------------------------------------------------------------------------|------|------|------|------|------|
| Coking coal                | R/GJ  | (ERC, 2013;<br>DoE, 2011) | Imports of coal coking                                                                  | 55   | 60   | 66   | 70   | 75   |
| Bituminous coal            | R/GJ  | (ERC, 2013)               | Extraction of coal                                                                      | 27   | 30   | 33   | 35   | 37   |
| Metallurgical coke         | R/GJ  | (Resource-Net,<br>2011)   | Projection linked to coal trend,<br>SATIM model 2013                                    | 112  | 123  | 134  | 143  | 152  |
| Petcoke                    | R/GJ  | (Resource-Net,<br>2011)   | Projection linked to crude oil<br>trend, SATIM model 2013                               | 111  | 137  | 170  | 192  | 213  |
| Natural gas                | R/GJ  | (ERC, 2013)               | Imports of gas Southern<br>Mozambique piped                                             | 44   | 55   | 68   | 77   | 85   |
| Crude oil                  | R/GJ  | (ERC, 2013)               | Imports of oil crude                                                                    | 97   | 121  | 150  | 168  | 187  |
| Natural gas liquids (NGL)  | R/GJ  | (ERC, 2013)               | Imports of gas international NGL                                                        | 72   | 88   | 108  | 121  | 133  |
| Liquid petroleum gas (LPG) | R/GJ  | (ERC, 2013)               | Imports of oil LPG                                                                      | 276  | 300  | 329  | 348  | 367  |
| Motor gasoline             | R/GJ  | (ERC, 2013)               | Imports of oil gasoline                                                                 | 124  | 153  | 188  | 211  | 234  |
| Gas diesel oil             | R/GJ  | (ERC, 2013)               | Imports of oil diesel                                                                   | 117  | 145  | 180  | 203  | 226  |
| Heavy fuel oil             | R/GJ  | (ERC, 2013)               | Imports of oil HFO                                                                      | 97   | 121  | 150  | 168  | 187  |
| Kerosene                   | R/GJ  | (ERC, 2013)               | Imports of oil kerosene                                                                 | 127  | 154  | 189  | 211  | 232  |
| Biomass bagasse            | R/GJ  | (ERC, 2013)               | Renewable resource: biomass<br>bagasse                                                  | 20   | 20   | 20   | 20   | 20   |
| Biomass wood               | R/GJ  | (ERC, 2013)               | Renewable resource: biomass<br>wood                                                     | 20   | 20   | 20   | 20   | 20   |
| Biodiesel                  | R/GJ  | (ERC, 2013)               | Imports of Biodiesel                                                                    | 123  | 152  | 189  | 213  | 237  |
| Electricity                | R/GJ  | (DoE, 2011)               | IRP projection, Figure 4.<br>Breakdown of anticipated average<br>electricity price path | 117  | 264  | 264  | 264  | 264  |
| Bioethanol                 | R/GJ  | (ERC, 2013)               | Imports of bioethanol                                                                   | 131  | 160  | 198  | 222  | 246  |
| Refinery fuel gas          | R/GJ  | Specific assumption       | Linked to imported crude oil projection                                                 | 8    | 10   | 13   | 14   | 16   |

Table 12: Assumed energy prices for 2010 base year and projected prices up to 2050

While a specific set of energy prices was assumed for the study, it is recognised that when developing sector specific feasible mitigation options, prices that are applicable to the specific activity will need to be applied.

#### 10.2.4 Constructing the marginal abatement cost curve

Once the technological mitigation potential and marginal abatement cost have been quantified for each measure, the measures are then grouped (at national, sector or sub-sector level) and the mitigation potential of each group of measures is summed to give the overall mitigation potential. Finally, the groups of measures (national, sector or subsector) are ranked based upon their cost effectiveness and presented as MACCs at national, key sector and subsector level for 2020, 2030 and 2050. The mitigation measures are ranked from left to right along the x-axis from cheapest to most expensive.

The MACC development process has taken a number of iterations to finalise. Draft versions of each MACC in each sector have been presented for discussion to members of the TWG-M. Feedback has been gathered in an effort to model the technical mitigation potential as accurately and realistically as possible. The sector-specific assumptions made for each identified mitigation measure are detailed in the technical appendices.

### 10.2.5 MACC Development Approach for Power Sector

Assumptions regarding the selection and implementation of measures in the power sector are consistent with the options specified under the IRP Policy-Adjusted Scenario (DoE, 2011). The project team was requested to seek consistency with the IRP scenarios; therefore the choice was influenced by the technologies defined in the report. Most of the options analysed are advanced generation technologies, and energy generation from renewable sources.

The abatement potential and associated cost of the different technologies have been analysed using a scenario tool for the power sector specifically designed to project emissions and consider abatement options for the sector. The tool and the approach to building MACCs for the sector are described in detail in Technical Appendix C: Energy Sector.

# 10.2.6 MACC Development Approach for Non-power Energy and Industry Sectors

In the industry and non-power energy (excluding electricity generation) sectors, the selected level of implementation of a mitigation measure in a given year is defined by three parameters outlined below.

- Starting point: When additional mitigation action is implemented.
- **Penetration rate:** At what rate a measure is implemented over the 2010–2050 time period.

• **Uptake**: The extent to which a measure is implemented and deployed across the sector at a point in time (e.g. 25%, 50% or 100% by 2050).

To determine the starting point, penetration rate and uptake of each measure, a pragmatic approach is applied guided by the principle of what is technically available (and not limited by economic and other non-technical limitations).

The following straightforward assumptions have been made.

- Generally, measures are implemented between 2010 and 2050, from 0% to 100% additional uptake.
- Measures are implemented starting from when they are deemed to be technically available.
- Measures are typically implemented sector-wide at a rate from 0 to 100% over a period of 10 years if a measure is a smaller retrofit project (that is with a lifetime of between 10 and 15 years). If measures are deemed to be locked-in technology (with a lifetime of between 25 and 40 years), then they are implemented sector-wide over 20 years.
- Where a set of measures is mutually exclusive, then it is assumed that they will be implemented equally and the total summed uptake of these measures cannot exceed 100% (for example, post combustion and oxyfuel carbon capture and storage (CCS) technologies).
- Where a measure is considered to be far too costly in comparison to other options or not feasible due to the prior implementation of another measure, then the uptake has been set to zero and the measure has been removed from the MACC.

Indirect emissions reductions caused by interventions which reduce grid electricity consumption (for example, increased onsite electricity generation) are included in the MACC analysis, as well as reductions of fugitive emissions, industrial process emissions and direct emissions from fuel combustion.

#### 10.2.7 MACC Development Approach for Transport Sector

In analysing abatement opportunities for the transport sector, the potential emission reductions have been assessed on a life cycle basis. This means, for example, that abatement measures associated with changes in electricity consumption take into account any impacts on emissions in the electricity production sector (IAI<sup>5</sup>). Likewise, emission factors associated with the use of biofuel take into account upstream emissions from

5. IAI is the IPCC source category comprising emissions from fuels combusted by the fuel extraction or energy-producing industries.

biofuel production. This approach is more comprehensive than that adopted within other sectors of the study, where, with the exception of indirect emissions from electricity consumption, the analysis has only considered direct emission reduction. For the transport sector, a more complete assessment of emissions is important as the indirect emissions from transport fuels are significant. In addition, the abatement measures in the transport sector include different powertrains and fuel technologies, with very different life cycle impacts.

For each of the types of measures considered for the transport sector, international benchmarks were reviewed, compiled and analysed in a South African context. For the technology measures (that is, more fuel efficient and alternative fuel vehicles), international benchmarks provide a good basis for the likely costs in South Africa. However, for certain other measures, such as those associated with modal shifts, the characteristics of the measures are much more site or project specific and it is much more difficult to define generic benchmarks for the cost or effectiveness of these measures. The assumptions used for making mitigation projections and costing the intervention in each case are provided in Technical Appendix E:Transport Sector.

The assessment of the marginal cost of the measures was based on evaluating the additional cost of the measures, relative to the measures that would have been implemented otherwise. This cost included the additional capital cost of the abatement measures, but also the ongoing operating and maintenance costs.

For road transport, the marginal cost calculations depend on the following metrics: fuel price projections, capital costs of new cars, their fuel efficiency and maintenance costs. The rail sector mitigation options are based on differing uptake of improved efficiency train fleets, fleet replacement and the use of alternative fuels. The main driver of the MAC analysis here is the cost associated with each measure. For aviation, the key technical data, including cost assumptions, have drawn upon international benchmarks. Since the market for aircraft is global the measures data is assumed to be applicable to a South Africa context. All assumptions and sources are detailed in Technical Appendix E:Transport Sector:

## 10.2.7.1 Key assumptions

The following key assumptions are made in constructing MACCs for the transport sector:

 Penetration of measures: The assumed penetration of the measures is based on expert judgement, taking into account cost and technical factors, and informed by standard (s-curve) assumptions for the penetration of emerging technologies over time. This essentially implies a greater share of new sales for more established technologies initially, with the penetration of emerging technologies increasing over time.

- Measures interaction: Interaction between measures is
  particularly important for biofuels. For rail and aviation,
  the penetration of biofuels has been limited to a relatively low level, reflecting an assumption that available
  resources of sustainable biofuels will be constrained, and
  therefore decisions will be required on where the available resource will be used. The conservative assumptions
  made regarding biofuels are further justified by the considerable uncertainty surrounding the future availability
  and costs of biofuel resources.
- Counterfactual technology: For the vehicle technologies, the abatement costs have been defined relative to the same counterfactual technology (which in most cases is a less efficient version of the conventional technology), ensuring an equal comparison of the technologies. Changes in costs over time, and differences in energy sources mean that the relative cost effectiveness of different technology measures varies over time. Furthermore, the rate at which costs evolve varies between technologies, and this in turn changes the relative ranking of measures over time. However, for all measures the general trend is a reduction in cost over time. For the modal shift measures, the assessment is based on a single case study and extrapolated to a national summary. The savings represent the relative difference in emissions between different modes, and can be considered relatively robust in isolation. The costs for the modal shift measures are overall much more uncertain because they are very project-specific. Results for these measures should be treated with greater caution as a result.
- *Emission factors*: For all measures the emissions have been assessed on a life cycle basis. For electric vehicles this means that emissions from power generation have been taken into account, and for biofuels emissions have been assessed on a life cycle basis. To ensure comparability, the emission factors for fossil fuels have also been assessed with indirect emissions included. This provides a more complete assessment of the mitigation potential from the sector.

#### 10.2.8 MACC Development Approach for Waste Sector

The assessment of mitigation potential for the waste sector was restricted to municipal waste, because data for industrial waste emissions were not available. As many of the technologies considered for the waste sector have not been implemented yet in South Africa, robust data on specific costs for projects in South Africa was difficult to obtain. Therefore, international data was used, although wherever possible this was cross checked against the high level data or indicative cost estimates available in-country. In some cases, with agreement from experts within South Africa, cost estimates were adjusted to reflect South African conditions.

Due to interactions between measures, the abatement potential and cost-effectiveness of single options in the waste sector depend on assumptions about the implementation of other options. In order to construct the MACC curves, the cost-effectiveness of each of the options was calculated, assuming, for options which involve diverting waste away from landfill, that there was no landfill gas recovery. This shows that recovery of landfill gas with flaring, and with electricity generation are the most cost-effective options. Implementation rates for these options were therefore applied, giving reduced savings for the diversion options. It is then assumed that the waste diversion options are implemented; their abatement potential and cost-effectiveness is recalculated given the assumptions regarding landfill gas recovery. The reduction in waste going to landfill is then used to scale back the actual savings achieved by landfill gas recovery options. Waste diversion options are implemented in order of their cost effectiveness, subject to limitations on their applicability.

For options which involve electricity generation, while the value of the electricity generated was included in the cost effectiveness assessment, additional GHG savings which might be realised by avoiding the need for fossil fuel-based electricity generation were not included to ensure no double counting of emissions savings with the power sector.

A full description of abatement and marginal cost estimates for the waste sector is provided in Technical Appendix F: Waste Sector.

# 10.2.9 MACC Development Approach for Agriculture, Forestry and Other Land Use Sector

Based on an analysis of land use data, the opinions of specialist consulting team members and the AFOLU task team discussions, it has been assumed that land areas under crop production and commercial forestry are stable. Therefore economic growth is not a driver of emissions in this sector: While the demand for agricultural products continues to grow, this demand is being met through production on the same area of land complemented by growing imports. The key assumptions regarding costing and estimating mitigation potential for each of the measures is summarised in Table 13 below.

| Mitigation option                  | Basis for estimating quantum of emission mitigation                                                                                                                                                                                                                                                                           |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Treatment of livestock<br>waste    | All pigs are in piggeries; Cattle in feedlots during fattening stage increases at current rate to a maximum of 70%. Percentage of piggery and cattle feedlot waste treated with anaerobic digestion increases to 70%.                                                                                                         |
| Expanding plantations              | Current plans for 100 000 ha of new forests to be implemented. In addition, a further 100 000 ha to be developed with an associated loss of water to the agriculture sector. The assumption is that irrigated maize production will be reduced to allow for an equivalent amount of water to be used for commercial forestry. |
| Urban tree planting                | Assumption is that there will be one tree per household with the 'backlog' to be made up over 20 years and then for all new urban developments to have this number of trees.                                                                                                                                                  |
| Rural tree planting<br>(thickets)  | Assumption is that thicket regeneration is only possible in 800 000 ha of the Eastern Cape.<br>Assuming the current rate of planting (based on the Subtropical Thicket Restoration Programme (STRP)), 20% of this area will be planted over 40 years.                                                                         |
| Restoration of mesic<br>grasslands | Restoration assumed to take place only on degraded mesic grasslands.                                                                                                                                                                                                                                                          |
| Biochar addition to cropland       | Assumption is made that only alien invasive trees will be used as feedstock. 30% of wood to be used for biochar.                                                                                                                                                                                                              |

### Table 13: Assumptions regarding costing mitigation measures for the AFOLU sector

The assumptions for making mitigation projections and costing the interventions in the AFOLU sector are provided in Technical Appendix G: AFOLU Sector.

# H. Quantifying Mitigation Potential

## II.I Technical Mitigation Potential

The previous section described the approach to identifying mitigation options and calculating marginal abatement cost curves. Through a process of discussion with the TWG-M and with sector experts represented on each of the five sector task teams, a final list of mitigation measures for each subsector was developed. These are summarised in Table 32 at the end of this report, as well as in each of the technical appendices for key sectors. Table 32 also contains the finalised estimates of abatement (in ktCO<sub>2</sub>e) and marginal abatement costs (in R/tCO<sub>2</sub>e), which represent the inputs to the MACCs for each of the three periods considered: 2020, 2030 and 2050. These estimates effectively summarise the technical mitigation potential estimate in each subsector in this study.

The technical mitigation potential is the amount by which it is possible to reduce GHG emissions or improve energy efficiency by implementing a technology or practice that has already been demonstrated. In some cases implicit economic considerations are taken into account (IPCC, 2007).

### 11.2 Projecting Emissions with Additional Measures

Having determined the technical mitigation potential for all measures in a sector (or group of sectors), it is then possible to project future reductions in emissions based on that potential. These projections are all based on mitigation measures identified under this study which are, by definition, in addition to any pre-existing mitigation actions. Accordingly, these are referred to as 'with additional measures' (WAM) projections. In all cases, mitigation is an estimate relative to a reference case projection. Two projections of future GHG emissions have been provided as reference cases under this study. The first assumes no mitigation actions have occurred at all and is hence referred to as the 'without measures' (WOM) projection. The second projection accounts for existing mitigation measures implemented between 2000 and 2010 in projecting emissions forwards to 2050. As this projection is aligned to the draft national GHGI between 2000 and 2010 and because it most closely represents future emissions, assuming no additional measures will be implemented after 2010, this 'with existing measures' (WEM) projection is used as the reference against which abatement under the WAM projections is calculated.

The starting point of the WAM projections is thus 2010 and they extend to 2050. A WAM projection can effectively be built using any combination of the mitigation measures quantified in this study. Results are displayed in the technical appendices and typically assume that all available measures are fully-implemented (that is, 100% of technically-feasible mitigation potential is implemented). It is worth noting that the rate at which emissions are reduced over time, and the final level of reduction achieved, is a matter of priorities and requires careful choices to be made. The intention under the NCCRP is to prioritise the implementation of mitigation options on the basis of several considerations, not merely abatement potential and costs. Accordingly, the MCA framework has been developed as part of this study to aid in selecting mitigation measures, based on a given set of evaluation criteria and the relative weights assigned to those criteria. How these inputs are combined to develop indicative future abatement pathways is discussed in the next section.

# 12. Developing Abatement Pathways

The previous two sections of this report described the approach used to identify the mitigation measures together with the extent of mitigation which can be achieved with each measure and the associated costs of implementing each measure. If only cost was important this would result in a ranking of mitigation measures based on one criterion (cost); hence a single emission reduction trajectory, or pathway.

However, the GHG Mitigation Potential Analysis has broader objectives, specifically to take other criteria (or impacts) into consideration and to rank the mitigation measures which will need to be implemented to achieve a given level of mitigation, based on multiple criteria. This leads to the concept of abatement pathways, with various pathways defined by different sets of criteria for selecting mitigation measures (which way to go in ranking measures for implementation) and the extent of mitigation required (how far to go).

This section describes the approach to developing abatement pathways, namely:

- defining the pathways (using different criteria weightings)
- ranking measures (based on the marginal abatement net benefit curve)
- developing a framework for evaluating targeted levels of emissions reduction against the effort required to implement the required measures
- assessing the wider macroeconomic impacts of implementing the measures required to achieve a targeted level of abatement.

## 12.1 Defining Abatement Pathways

This study has involved the development of reference case emissions projections, the identification and analysis of mitigation in key sectors, and assessments of the broader socioeconomic and environmental impacts of these measures. An explanation is provided in this section for how these elements have been combined to develop national abatement pathways. The distinction between projections, scenarios and abatement pathways is explained in Box 3.

# Box 3: Distinguishing between Projections, Scenarios and Abatement Pathways.

#### Projection

In general usage, a projection can be regarded as any description of the future and the pathway leading to it.

## Scenario

A scenario is a coherent, internally consistent and plausible description of a possible future state of the world. It is not a forecast; rather, each scenario is one alternative image of how the future can unfold. A projection may serve as the raw material for a scenario, but scenarios often require additional information (for example, about baseline conditions).<sup>6</sup>

#### Abatement Pathway

An abatement pathway defines a set of emission reduction trajectories (pathways) over time, which is technologically achievable. The pathway merely identifies what is technically possible without providing a detailed scenario-based description of how that outcome would be achieved.

6. http://www.ipcc-data.org/ddc\_definitions.html

The phrase *abatement pathway* has been adopted in this study to characterise a set of emission reduction trajectories (pathways) over time, which are technologically achievable. The assumptions regarding abatement potential and marginal abatement costs have been determined in the process of developing MACCs. Similarly, the MCA framework which has been developed has allowed the socioeconomic and environmental impacts of specific measures to be assessed. Once a set of pathways have been determined (discussed further below), the wider macroeconomic impacts of implemented measures (which make up that pathway) have also been determined.

However, the report makes a distinction between abatement pathways and emission reduction scenarios. The pathways presented in this study identify a set of technically possible outcomes. They do not meet the full definition of scenarios, which are a coherent, internally consistent and plausible

#### 12.2 Approach to Developing Abatement Pathways

### Overview of approach

The approach applied is illustrated in the diagram below:

description of a possible future state of the world. No detailed assessment of baseline conditions under which a set of scenarios for South Africa's transition toward a lower-carbon economy could be developed have been made. It is also recognised that any such transition implies that a very broad set of economic, social, environmental and political choices need to be made. This falls outside of the scope of the current study, which is aimed at providing a technical assessment of mitigation potential only.

The concept of abatement pathways has been developed to illustrate a range of emission reduction trajectories – all of which are technically feasible. As discussed below, the application of the concept of marginal abatement net benefit allows any user to explore the necessary trade-offs between the targeted level of abatement and the effort involved in any decision to implement a range of mitigation measures.



Each step includes the following:

- Sector analysis and options: Mitigation and associated costing for each measure, with measures aggregated into sectors. Preparation of MACCs (see Section 10.2 as well as Technical Appendix A: Approach and Methodology and detailed assumptions regarding costing and estimating mitigation potential in the seven individual sector appendices C to G).
- Multi-criteria analysis: Undertake MCA considering each measure against the agreed criteria (see Section 12.2.1 and Technical Appendix A: Approach and Methodology).
- **Ranked list**: Develop ranked list of measures for each weighting of criteria considered, taking all measures into consideration (see Section 12.2.5).
- **Develop pathways**: Develop pathways that take into consideration the different ways criteria have been weighted and the extent of mitigation to be achieved.

 Projections: Make projections of mitigation measures (WAM projections) for each pathway based on the progressive application of measures according to their ranking.

The analysis was undertaken using a set of tools that are available as  $Excel^{TM}$  workbooks with associated graphics, as illustrated in Figure 12 below.

The methodology applied for each stage of analysis is described in detail in Technical Appendix A: Approach and Methodology. The main features are highlighted below:

- All information is available in a consistent format.
- While the workbooks are not all linked (in the sense that cells are read electronically from one to the other) the results from each stage can be cut and pasted easily into the workbooks for later stages.
- All tables and graphical results included in this report are copied from the workbooks.

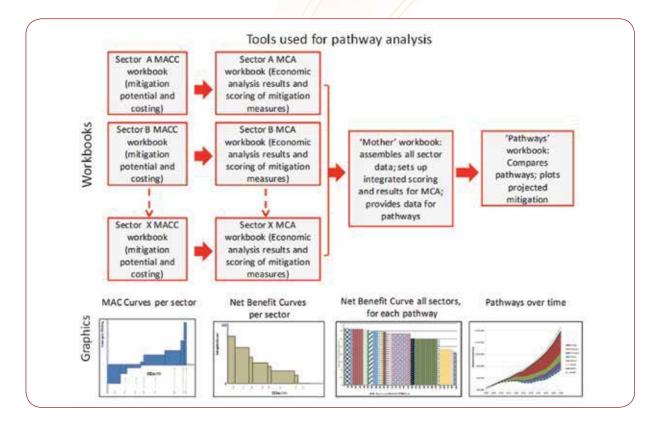



Figure 12: Tools used to undertake analysis of mitigation options and associated pathways

#### Multi-Criteria Analysis

The requirement to assess mitigation measures based on multiple criteria has been noted above. These criteria are strongly aligned with impacts, for example: how much will it cost, what will the effect be on the economy and how will communities be affected? For each of these impacts a criterion or criteria are identified so that mitigation measures can be assessed in relation to these criteria and then compared to other measures. As soon as multiple criteria are being considered an analysis framework is required to make decisions around how the criteria are applied and what the results mean. For this project the technique of multi-criteria analysis is used. This is described briefly in Box 4 and more fully in Section 6 of Technical Appendix A: Approach and Methodology.

# Box 4: Multi-Criteria Analysis

MCA is a technique that explicitly considers multiple, often competing, criteria in a decision-making environment. The key benefits of MCA are that it provides a proper structure for a decision-making process, and that it makes the manner in which the multiple criteria are evaluated explicit.

MCA does not remove the influence of judgement or personal preference in decision-making; instead it makes those judgements and preferences explicit and thus open to analysis, comment and change if required. Finally, it should be noted that this approach has considerable advantages compared with the traditional marginal abatement cost (MAC) analysis which considers only the criterion of cost for a given amount of GHG mitigation. Introducing other criteria which also focus on impacts (also referred to as benefits) gives a far more meaningful outcome.

#### Steps in the MCA process

Firstly, it is important to establish a decision making structure: who will take what decisions and when? For this project the overall responsibility for deciding on options vested with the Technical Working Group which represents all key stakeholders. Sector Task Teams were responsible for decisions associated with scoring and weighting individual projects.

# Box 4: Multi-Criteria Analysis - continued

An MCA process then follows the steps illustrated in the figure below and described in the table below that.



| Step                                            | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Identify options                                | A list of measures to be evaluated is required with the process to identify measures described elsewhere.                                                                                                                                                                                                                                                                                                                                                                                       |
| Identify criteria                               | Criteria are specific, measurable objectives that can be used to assess the consequences of selecting a particular option. For this project a two-tier structure of criteria was set up, as described elsewhere in this report.                                                                                                                                                                                                                                                                 |
| Set up scoring scales<br>and undertake analysis | The next step is to establish scales against which each criterion can be scored. Scales can be quantitative (which requires analysis) or qualitative (which is based on the opinions of stakeholders and experts).                                                                                                                                                                                                                                                                              |
|                                                 | Where the data and method of analysis is available, a quantitative analysis is applied to calcu-<br>late the impact of each mitigation measure in relation to the criterion. Where such a quantitative<br>analysis was not possible, a qualitative approach was applied. The scoring for qualitative criteria<br>was based on judgement by stakeholders, informed by expert opinion. The Sector Task Teams were<br>responsible for taking the decisions and for agreeing on the scoring scales. |
| Score the options                               | Each option must be scored against the established scale. For the quantitative criteria, scoring is based on the results of an analysis of numbers. For qualitative scores, opinions of Sector Task Team members were applied.                                                                                                                                                                                                                                                                  |
| Apply a value function                          | A value function translates scores on differing scales into points on a scale of 0 to 100, and thus allows comparability between criteria. Where there is a relatively even distribution of scores across the full spectrum of measures, a linear value function is appropriate.                                                                                                                                                                                                                |
|                                                 | However, it is important that outliers are dealt with carefully as they can distort the results by forcing the majority of measures into a narrow band within the 0 to 100 scale. In order to provide for this, the scores for outlying measures, in relation to the criterion concerned, need to be adjusted with a note made of what has been done. A linear relationship is applied for all criteria for this project.                                                                       |
| Assign weights                                  | Assigning weights is commonly understood as prioritising the criteria, in other words assessing how important the various criteria are relative to one another.                                                                                                                                                                                                                                                                                                                                 |
| Calculate overall weighted scores               | This is a mathematical process: an option's score on a criterion is multiplied by the weight of the cri-<br>terion. This is done for all criteria, and the products are summed to give an overall preference score.                                                                                                                                                                                                                                                                             |
| Examine the results                             | The final step in the MCA is to establish a ranking of the options and make recommendations.                                                                                                                                                                                                                                                                                                                                                                                                    |

### 12.2.1 Selecting and Applying Criteria to Get Pathways

The Technical Working Group on Mitigation (TWG-M) agreed to apply the following criteria, structured into two tiers (Figure 13). Each mitigation measure is scored in relation to each of these criteria.

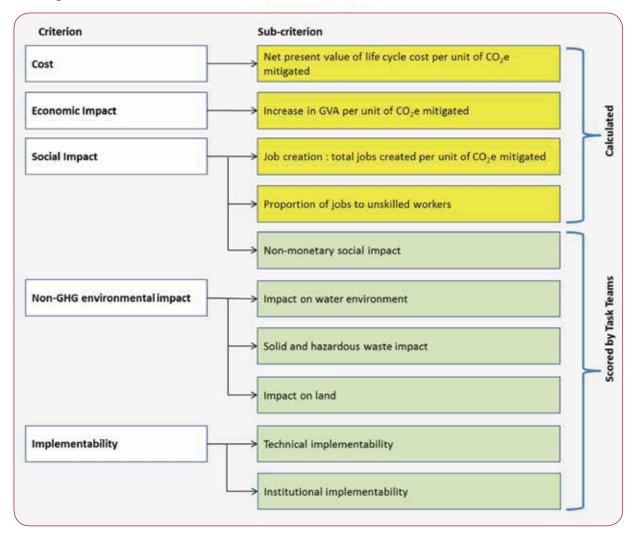



Figure 13: Criteria and sub-criteria for the MCA model (as approved by the TWG-M)

#### 12.2.2 Apply weightings to criteria

The important next step is to apply weightings to the criteria. Based on its weighted average score, a relative position of each measure in the full list of mitigation measures is determined. This overall score is then used to define the pathway – the progressive application of mitigation measures in order of priority to get to a given level of abatement.

The Technical Working Group on Mitigation (TWG-M) agreed to three primary sets of weightings as illustrated in Table 14. The three different primary weighting selections have been defined as pathways. These pathways are:

- a balanced weighting pathway, representing a broad consensus among all interest groups represented on the TWG-M
- a pathway which emphasises costs and implementability of mitigation measures
- a pathway which emphasises social and non-GHG environmental impacts of mitigation measures.

#### Table 14: Weighting of criteria to define abatement pathways<sup>7</sup>

| Primary criterion                 | Sub-criteria split<br>(common to all pathways) |    | Balanced<br>weighting<br>pathway | Pathway with<br>emphasis on costs and<br>implementability | Pathway with empha-<br>sis on social and non-<br>GHG environmental<br>Impacts |  |
|-----------------------------------|------------------------------------------------|----|----------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------|--|
| Cost                              |                                                |    | 23                               | 40                                                        | 10                                                                            |  |
| Economic impact                   |                                                |    | 14                               | 10                                                        | 10                                                                            |  |
|                                   | Job creation                                   | 50 | 24                               | 10                                                        | 35                                                                            |  |
| Social impact                     | Non-monetary                                   | 40 |                                  |                                                           |                                                                               |  |
|                                   | Nature of jobs                                 | 10 |                                  |                                                           |                                                                               |  |
|                                   | Water                                          | 60 |                                  | 10                                                        | 35                                                                            |  |
| Non-GHG environ-<br>mental impact | Land                                           | 20 | 20                               |                                                           |                                                                               |  |
| mentarimpact                      | Waste                                          | 20 |                                  |                                                           |                                                                               |  |
| lass la se sata la llite.         | Technical                                      | 70 | - 19                             | 30                                                        |                                                                               |  |
| Implementability                  | Institutional                                  | 30 | 17                               | 50                                                        | 10                                                                            |  |

As is evident from Table 14, the pathways are defined by the weighting of criteria. This gives a different ranking of mitigation measures and selection of the ranked mitigation options which together account for a specific percentage of the total mitigation potential.

Quantitative data informing the MCA scoring of options for all measures as well as the score for the main criteria and the overall weighted score for the balanced weighting pathway are shown in Table 33.

Overall scores and rankings for all measures under the balanced weighting pathway, the pathway which emphasises costs and implementability, and the pathway which emphasises social and environmental factors are shown in Table 34.

#### 12.2.3 Selecting which Pathway to Take

Different stakeholders are likely to favour different pathways. Three mitigation pathways have been determined, based on different weightings of the main criteria in the MCA framework developed for the purpose of assessing the socio-economic and environmental impacts of mitigation options. The MCA model allows a range of evaluation criteria to be combined in a decision-making framework. The resulting ranking of measures is thus based on more than merely the consideration of abatement potential and marginal abatement cost. As described above, the balanced weighting pathway allows for relatively equal consideration of all key factors in the MCA model, the second pathway emphasises the cost and implementability of mitigation measures, assigning a larger weight to measures which have lower marginal abatement costs and are easier to implement, while the third pathway emphasises social and environmental factors, effectively prioritising measures with lower impacts in these areas.

#### 12.2.4 Choosing How Far to Go

Estimates of abatement 'with additional measures' (WAM) have been provided for all sectors covered in the report. The WAM projection assumes that all measures identified in this report have been implemented to their full technical potential (that is, 100% of technical mitigation potential). Although the order of implementation of each measure will change for each pathway, the total mitigation achievable will be the same in all cases regardless of the order in which the measures are implemented.

7. In retrospect it is arguable that a greater shift in weightings should have been applied. However, these three weightings were decided by the TWG-M and the analysis has proceeded with them as they are.

However, it is clear that for each case, the lower-ranked measures become less favourable. This analysis has looked at the impact of applying measures to achieve three intermediate levels of mitigation: 25%, 50% and 75% of the maximum technical potential. Differences in average scores from the MCA model across all three pathways are shown in Table 15.

| Average score for all criteria<br>for progressive 25 percentiles | Balanced weighting<br>pathway | Pathway with emphasis on costs and implementability | Pathway with emphasis on<br>social and non-GHG<br>environmental impacts |
|------------------------------------------------------------------|-------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------|
| l st 25 percentile                                               | 68.8                          | 75.8                                                | 65.5                                                                    |
| 2nd 25 percentile                                                | 61.2                          | 64.6                                                | 59.4                                                                    |
| 3rd 25 percentile                                                | 54.5                          | 57.2                                                | 53.3                                                                    |
| 4th 25 percentile                                                | 41.6                          | 43.9                                                | 37.2                                                                    |

Table 15: Average scores from the MCA model under each of the three abatement pathways, shown for each 25th percentile

#### 12.2.5 Choosing which measures to implement

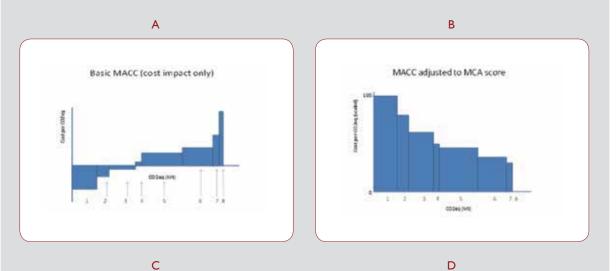
In ranking the measures for implementation, both the amount of mitigation which can be achieved and the relative ranking provided by the weighted average score from the MCA analysis (taking all criteria into consideration) need to be considered. For this reason, the concept of 'marginal abatement net benefit' has been developed for this project. Here the term net benefit is intended to take cost, impacts and implementability into consideration – all the factors taken into consideration in the MCA. These can be expressed as a value which has any meaning other than as a relative measure applicable to comparing measures and assessing the relative benefit of groups of measures. The concept can be applied as a graph, or a curve, as illustrated in Box 5.

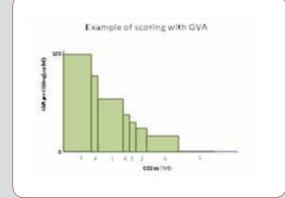
#### 12.3 Evaluating National Abatement Pathways

## 12.3.1 Moving from the Assessment of Individual Measures to Assessing Pathways

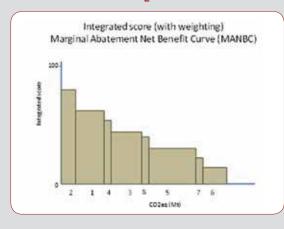
At this stage of the mitigation assessment process a shift takes place from assessing individual measures to assessing pathways which are groupings of mitigation measures.

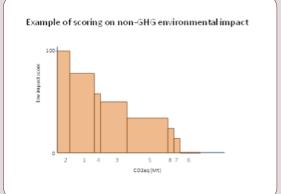
The above sections of the report define three mitigation pathways and set up a ranked list of mitigation measures which, assuming they are applied incrementally, create increasing levels of mitigation with decreasing net benefit, taking all criteria into consideration, as illustrated in Table 15. Further, the methodology results in 'marginal abatement net benefit curves' (MANBCs). Using these curves, it is possible to read from the horizontal axis how much mitigation is to be achieved, with 25%, 50%, 75% and 100% of the technical mitigation potential nationally used for illustration purposes. The results, with actual MANBCs plotted, are shown in Section 19.


Quantitative and qualitative inputs and scores for all measures in the balanced weighting pathway are shown in Table 33 below.


# 12.3.2 Economic impact associated with pathways and level of implementation of potential mitigation

A further feature of the decision-making arrangements is available through the application of economic modelling for each pathway, taking the grouping of measures in each sector into consideration. For this purpose the INFORUM economic model is applied, with the methodology for doing this described in Technical Appendix B: Macroeconomic Modelling. This allows for the aggregated impact of a set of measures to be assessed. The results of this analysis are reported in detail in Technical Appendix B with the results summarised in Section 20.


## Box 5: Marginal Abatement Net Benefit Curves


The concept of MANBCs is developed progressively from a MACC curve (A), first through converting costs per unit of mitigation into a score on a 1 to 100 scale (B) and then applying other criteria also scored on a 1 to 100 scale (C&D). Putting the results together with the criteria weighted for each pathway gives the final curve which takes all criteria into consideration and shows what additional mitigation is achieved in moving from left to right from higher priority to lower priority measures (E).





Е





#### Note:

- The total potential abatement (horizontal axis) remains the same for all the graphs.
- Where a single criterion is scored (e.g. cost) the first measure will score 100 and the last 0.
- If there are multiple criteria there is unlikely to be a measure scoring zero or 100.

# Chapter IV: Mitigation Potential by Sector

This chapter presents a summary of mitigation potential for each of the five key sectors considered in this study. Results are summarised as follows:

- Energy (Section 13)
  - Power sector
  - Non-Power sector
  - Industry (Section 14)
  - Metals
  - Minerals
  - Chemicals
  - Surface and underground mining (excluding coal)
  - Buildings (commercial, institutional and residential)
  - Other (pulp and paper production)
- Transport (Section 15)
  - Road transport
  - Rail transport
  - Aviation
- Waste (Section 16)
- AFOLU (Section 17)

# 13. The Energy Sector

This section identifies the GHG emissions mitigation potential for the South African energy key sector. The mitigation potential is presented in the form of marginal abatement cost curves (MACCs) for years 2020, 2030, and 2050, ranking available mitigation options in terms of their marginal abatement cost. The mitigation potential presented is considered to be technically achievable assuming that all identified mitigation technologies have been technically proven or will be proven prior to becoming available.

The energy sector comprises exploration and exploitation of primary energy sources, conversion of primary energy sources into more useable energy forms in refineries and power plants and the transmission and distribution of fuels. This includes IPCC emissions sector IA, fuel combustion activities; IAI, energy industries; and IB fugitive emissions from fuels. The energy sectors examined and sources of emissions, as classified by the IPCC categories, are listed in Table I6 below.

Mitigation opportunities for energy sector emissions which are presented in this section focus on four separate sources of emissions, described below:

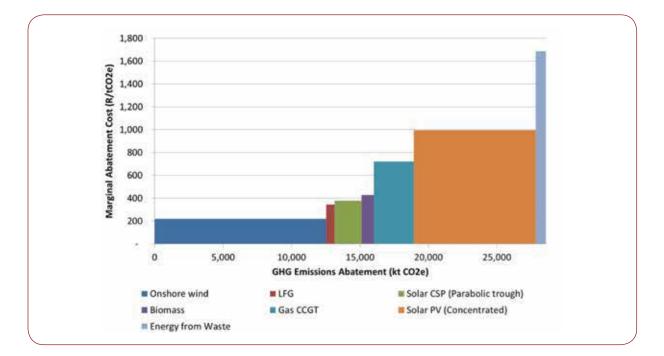
- Combustion emissions from the use of fuels in stationary combustion. Fuel combustion may be defined as the intentional oxidation of materials within an apparatus that is designed to provide heat or mechanical work to a process, or for use away from the apparatus.
- Fugitive emissions, which escape without combustion (for example, leakage of natural gas and the emissions of methane during coal mining and flaring during oil/gas extraction and refining).
- Process emissions, from production processes, from the use of greenhouse gases in products, and from non-energy uses of fossil fuel.
- Indirect emissions from the consumption of electricity.

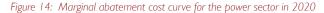
The most important sector is power generation, which accounted for 65% of all energy-related emissions in 2009 (DEA, 2011a). Fugitive emissions from the energy sector accounted for around 8% in 2009.

# Table 1 6: Energy subsectors (with IPCC emissions source classifications) included in the mitigation analysis

|                  |                                    | IPCC emissions category    |                               |  |
|------------------|------------------------------------|----------------------------|-------------------------------|--|
| Energy<br>sector | Subsector                          | Fuel<br>combustion<br>(1A) | Fugitive<br>emissions<br>(1B) |  |
| Power            | Electricity and heat<br>production | IAIa                       |                               |  |
|                  | Petroleum refining                 | IAIb                       | l B2aiii4                     |  |
| Non-<br>power    | Coal mining and handling           | IAIci                      | IBIa                          |  |
|                  | Oil and natural gas                | A   cii                    | I B2                          |  |
|                  | Other energy<br>industries         | IAIcii                     | IB3                           |  |

All of the mitigation measures and associated estimates of abatement potential and marginal abatement costs in the energy sector are presented in Table 32 for each of the three snapshots in time considered in this study: 2020, 2030 and 2050. The identifier associated with each measure is used in the legend of the MACC summaries per sector shown below. These identifiers are used consistently throughout the report and can be used to look up measures and associated values in Table 32.


A detailed discussion of GHG emission projections and mitigation opportunities for the energy sector is provided in Technical Appendix C: Energy Sector.


### 13.1 Power Sector

The analysis of mitigation potential in the power sector has sought consistency with the range of measures established under the IRP 2010 Policy-Adjusted Scenario (DoE, 2011). Therefore, the choice of mitigation measures was influenced by the technologies defined in this report. Most of the options analysed are advanced generation technologies and energy generation from renewable sources. The final set thus excludes options such as conversion or efficiency improvements of existing power plants.<sup>9</sup> Similarly, assumptions regarding costing and implementation rates flow directly from the IRP 2010 report. All assumptions are documented in detail in Technical Appendix C. Some additional measures have however been added to the mix of measures considered in the energy sector mitigation analysis. These include power generated from methane capture at landfill sites, and energy from waste – measures not considered under the waste sector for this reason.

#### 13.1.1 Marginal abatement cost curves

In 2020 (Figure 14), there are no measures that have a negative marginal abatement cost. The least expensive and also the measure with the highest abatement potential is wind power. Landfill gas (LFG), concentrated solar power and biomass provide small but still relatively inexpensive contributions to emissions savings (all under R450/tCO<sub>2</sub>e). Using combined cycle gas turbines (CCGT) could save a further 3,000 ktCO<sub>2</sub>e in 2020, while more expensive concentrated solar photovoltaic (PV) can deliver further significant emissions savings.





8. Note that reference case emissions (WOM and WEM) projections for the power sector are aligned to the Integrated Resource Plan for Electricity 2010–2030 (DoE, 2011). The definition of projections in the power sector is based on planned capacity additions to meet demand (according to the IRP). Accordingly, the WOM projection is represented by coal generation. It assumes that all base-load capacity comes from coal with mainly gas turbines, using diesel, providing peaking capacity. Some pumped storage hydro is also included, but there is no wind, solar, or waste generation. The WEM projection is represented by the IRP 2010 base case to 2030. Post 2030, the relative shares of the plant capacity observed in 2030 are held at consistent proportions to 2050.

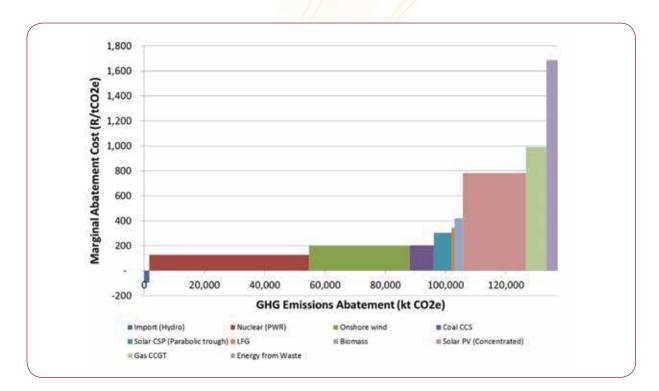



Figure 15: Marginal abatement cost curve for the power sector in 2030

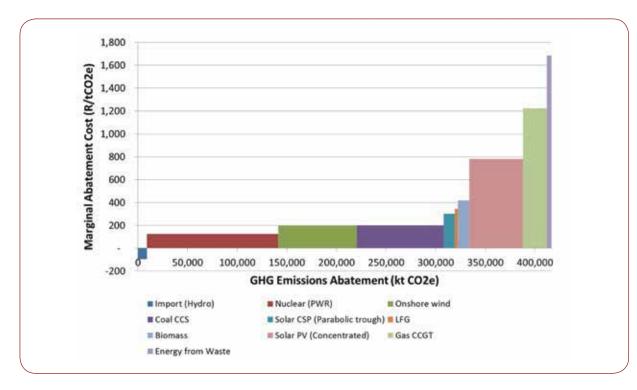



Figure 16: Marginal abatement cost curve for the power sector in 2050

In 2030 (Figure 15), three new technologies appear which together could deliver savings of more than 60,000 ktCO<sub>2</sub>e. Imported hydropower could deliver abatement of 1,700 ktCO<sub>2</sub>e,<sup>9</sup> at a negative marginal abatement cost, while nuclear power would provide abatement of a further 53,000 ktCO<sub>2</sub>e and coal power plants with carbon capture and storage (CCS) could deliver 8,000 ktCO<sub>2</sub>e<sup>10</sup>. The remaining technologies would deliver a similar abatement profile as in 2020, each technology delivering more abatement than before, with potential total abatement of 137 MtCO<sub>2</sub>e.

Finally, in 2050 the total potential abatement for the WEM projection exceeds 400 MtCO<sub>2</sub>e (Figure 16). The largest part of this is delivered by nuclear energy, followed by coal CCS and onshore wind. Imported hydro has a negative marginal abatement cost and is expected to deliver GHG savings of almost 9,000 ktCO<sub>2</sub>e. The nuclear energy option provides the largest single abatement from any measure considered in this study (132 MtCO<sub>2</sub>e). Despite the relatively large costs associated with building a nuclear plant, and because of the large mitigation potential, the marginal abatement costs are still lower than the other technologies.

#### 13.2 Non-Power Sector

The non-power energy sector includes four subsectors comprising petroleum refining, coal mining and handling, oil and natural gas production and other energy industries. Summary MACCs for the non-power sector are shown below. MACCs have been developed for each of the three snapshots (2020, 2030 and 2050) and are presented in the sections which follow. Table 32 shows a summary of abatement potential and marginal abatement costs for all measures.

In all cases, detailed assumptions for each mitigation measure are documented in Technical Appendix C. These assumptions include:

- The emissions reduction potential and energy saving potential for each measure
- The costs, availability and lifetime of the mitigation measures
- The starting point, penetration rate and uptake of each measure

#### 13.2.1 Marginal abatement cost curves

Marginal abatement cost curves for the non-power energy sector for the 2020, 2030 and 2050 snapshots are shown in Figure 17 to Figure 19.<sup>11</sup>

In 2020, a total of 4.5 MtCO<sub>2</sub>e of abatement potential has been identified in the non-power sector. A total of 79% of the available mitigation potential (3.5 MtCO<sub>2</sub>e) has a negative marginal abatement cost. In 2030, a total of 35.4 MtCO<sub>2</sub>e of abatement potential has been identified; 17.6% (6.2 MtCO<sub>2</sub>e) can be achieved through measures that have a negative marginal abatement cost. In 2050, a total of 50.6 MtCO<sub>2</sub>e of abatement potential has been identified, 14% (7.3 MtCO<sub>2</sub>e) can be achieved through measures which have a negative marginal abatement cost.

9. The price assumptions and timing of imported hydro power are optimistic. These costs are subject to negotiation, and might in reality be substantially higher.

10. The current marginal abatement cost estimates for nuclear power do not include fuel costs.

11. Note that the sectoral MACC summaries presented here do not include all mitigation measures that have been identified. Certain measures, which generally indicate very small mitigation potential but are associated with large marginal abatement costs, have been excluded as outliers in the impact assessment component of the study. These measures (including, for example, all measures for the oil and gas sector), have thus been excluded from the calculations on technical mitigation potential and national emission reduction pathways. In all cases, subsectoral MACCs including all measures are shown in the relevant sector appendices.

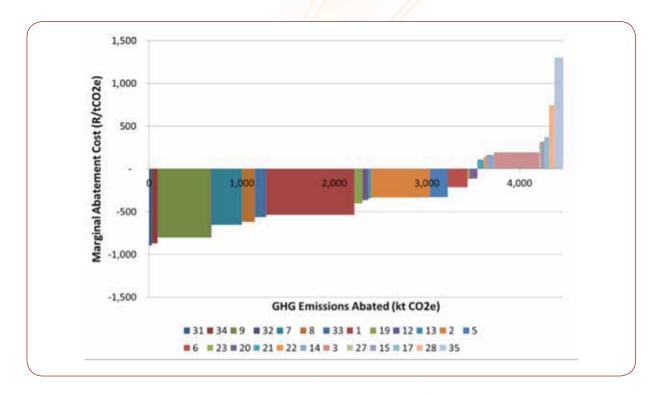



Figure 17: Marginal abatement cost curve for the non-power sector in 2020

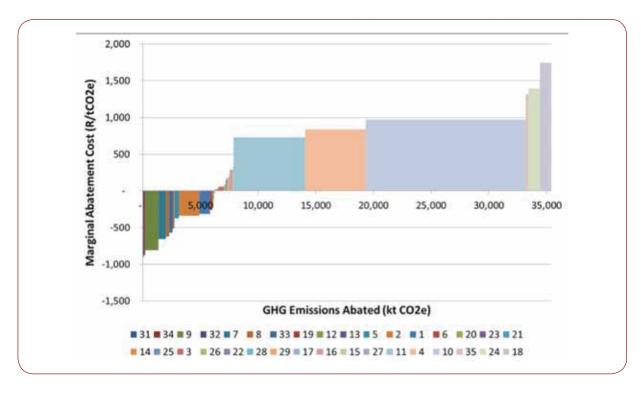



Figure 18: Marginal abatement cost curve for the non-power sector in 2030

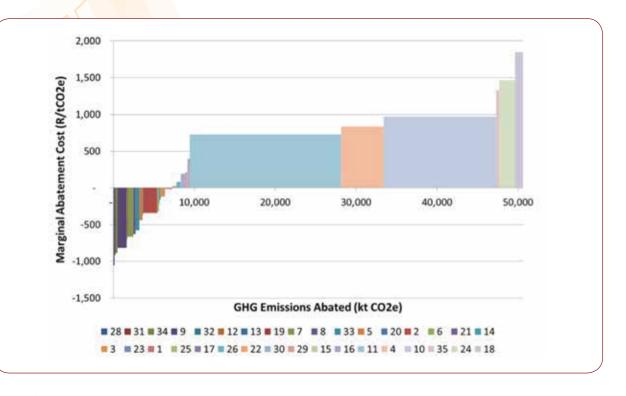



Figure 19: Marginal abatement cost curve for the non-power sector in 2050

# 13.2.1.1 Petroleum refining

The MACC analysis for petroleum refining makes the following general assumptions.

Production, energy and GHG emissions projections are split for existing and new production capacity. New capacity is assumed to be added in 2030 and 2050.

The measure of crude oil refined by existing refineries is based upon the "sources of crude oil for SAPIA members" provided in the 2010 SAPIA Annual Report (SAPIA. 2010). It is noted that this may not be an entirely accurate measure of oil refined due to changes in crude stock levels.

Sector growth is based upon supply estimates necessary to meet forecasted national liquid fuel demand in line with South African Government energy security targets, provided byTWG-M members and SAPIA members. New facilities with capacity of 250,000 barrels per day (bpd) of liquid fuel are assumed to be added in 2030 and 2050, adding an additional 500,000 bpd by 2050 (SAPIA, 2013).

With the aim of reducing emissions, the MACCs assume that 50% of refining facilities implement efficient onsite power energy production equipment by 2030 (for example, combined cycle gas turbines and combined heat and power) capable of meeting at least 60% of a refinery's electricity demand and reducing equivalent indirect emissions from imported power.

New refineries added in 2030 and 2050 are assumed to have lower emissions factors and to be more energy efficient compared to existing plants in 2010, reflecting the more modern design and adoption of best available technologies. Overall energy efficiency is assumed to improve by 20% compared to existing operations in 2010. These improvements are based on the assumption that all identified measures except CCS would be implemented in a new facility.

Carbon capture and storage (CCS) capital and operational costs for capture, transport and storage of CO<sub>2</sub> are based upon IEA benchmark costs (ETSAP, CCS, 2010). The additional annual costs of onshore storage assume US\$5/tCO<sub>2</sub>e transport and US\$10/tCO<sub>2</sub>e onshore storage cost. Storage offshore assumes US\$10/tCO<sub>2</sub>e for transport and US\$20/tCO<sub>2</sub>e for offshore storage cost. For CCS transport costs, 100km is selected as the default transport distance for CO<sub>2</sub> storage in offshore geological formations. It is noted that some sources may be located closer or further than the selected distances. To compensate for this uncertainty, the high IEA cost estimate for CO<sub>2</sub> transport is selected as above.

CO<sub>2</sub> storage capacity is not considered to be limited for the levels of CO<sub>2</sub>e storage proposed by the MACCs based upon assessments of onshore and offshore storage resources in South Africa. The estimated capacity of geological storage in South Africa is at least 150 Gt (150,000 Mt) of CO<sub>2</sub>, for example. The storage potential lies mainly in the capacity of saline formations associated with the oil- and gas-bearing sequences in the Outeniqua, Orange and Durban/Zululand basins (Council for Geoscience, 2010). It should be emphasised that the estimated geological storage volume (150 Gt) is theoretical. Through extensive basin exploration and site characterisation activities, effective (actual) storage capacity can be established and may be lower than initial theoretical estimates.

For storage of  $CO_2$  from existing plants, injection into either coal fields or saline formations can begin from 2025 and two (out of the four) refineries can be retrofitted. New refineries which come online in 2030 and 2050 have CCS installed (at 75% of the assumed benchmark capital cost for existing plants). The MACCs assume injection of  $CO_2$  into saline reservoirs in offshore basins can begin as early as 2030.

The cost of refinery fuel gas (RFG) is based on the assumption that 5% of crude feedstock is converted into RFG and production costs are 2.5% of total refinery product energy consumption giving an RFG production cost of approximately R8/GJ in 2010.

The assumed fugitive emissions for an existing refinery are based upon data on flaring of RFG submitted to the Greenhouse Gas Inventory for South Africa (GHGI) by one oil refinery equivalent to 666 GJ/day in 2012. The equivalent sector fugitive GHG emissions assume the same emissions for all four existing conventional oil refineries (approximately 1% of total emissions). The assumptions and sector estimate for years 2009 to 2012 are shown in Table 18 of Technical Appendix C: Energy Sector. The minimise flaring and utilise flare gas as fuel mitigation measure aims to abate these fugitive emissions and assumes that a 75% reduction in emissions is technically possible for existing refineries. For new refineries it is assumed that a 75% reduction and improvement is built in to reflect improvements in design.

The lowest-cost mitigation options in 2020 (Figure 17) are the installation of advanced energy management and monitoring systems, improvement of existing steam generating boiler efficiencies and the improvement of process heater efficiencies. These all have negative marginal abatement costs of less than -R100/tCO<sub>2</sub>e. Improved process control, improved heat exchanger efficiencies and recovery and utilisation of waste heat within the process all offer good abatement potential at varying cost levels. Minimising flaring activity and use of flare gas as fuel is the only option proposed to abate fugitive emissions and has a positive marginal abatement cost of over R300/tCO<sub>2</sub>e.

The 2030 MACC assumes the availability and uptake of CCS technology in the sector (Figure 18, option 18). Implementing

CCS on existing refineries can mitigate 998 kt CO<sub>2</sub>e/year.The cost of retrofitting existing refineries with CCS is estimated at over R1,750/ tCO<sub>2</sub>e. This is considerably more expensive compared to the cost of CCS in other sectors due to the complicated process, many sources of CO<sub>2</sub> (e.g. process emissions and flue gas emissions) and higher energy overhead required to capture the  $CO_2$  (e.g. as much as 6.2 G) of energy per tCO<sub>2</sub> captured). This is much more than the energy needed for CO<sub>2</sub> capture in power plants. Despite this high cost, implementing new refining capacity with CCS is capable of mitigating another 17% of the petroleum refining subsector emissions. The marginal abatement cost of including CCS in new refineries is estimated at R1,392/tCO<sub>2</sub>e. Implementing efficient energy generation techniques, including CCGT and combined heat and power (CHP), mitigates an additional 5% of total subsector emissions at a cost of R289/ tCO2e.

The rank order of mitigation measures remains the same in 2050 with the bulk of mitigation action achievable only at positive costs (i.e. above the x-axis in the MACC) as shown by Figure 19. Efficient onsite energy generation continues to show good mitigation potential. However, CCS remains the dominate mitigation option. The wider uptake of CCS in new refining capacity increases overall mitigation to 3,885 ktCO<sub>2</sub>e/ year or 54% of the reference emissions from the petroleum refining subsector.

## 13.2.1.2 Coal mining and handling

For the purpose of GHG mitigation, the coal mining MACC calculations assume that 2.5% of total coal mining operations in South Africa can be equipped for coal mine methane recovery and use for power and/or heat generation by 2030, increasing to 5% by 2040. The analysis also assumes that 7.5% of total coal mining operations in South Africa can be equipped for coal mine methane recovery and destruction by flaring by 2030, increasing to 10% by 2040. It is noted that the TWG-M sector experts stated that this technology may only be applicable to mining operations at a depth in excess of 200 metres and only with certain site-specific conditions due to a low inherent methane concentration in coal seams in South Africa, resulting in sporadic volumes and fluctuating concentrations released.

For the implementation of biodiesel mitigation measures, the MACCs assume that a maximum of 50% of the mining fleet can be fuelled by biodiesel. This assumes that first generation 5% biodiesel (B5) is available from 2010 and second generation 50% biodiesel (B50) is available from 2020. In both cases, it is assumed that the infrastructure and planning is in place to ensure 50% of the fleet can be supplied.

Sector growth ranges from 2.2% per annum on average from 2010 to 2050, in line with the emissions projection assumptions and the underlying macroeconomic model.

In 2020 (Figure 17), there are several low-cost energy efficiency measures available with negative abatement costs, including the implementation of process, demand and energy management systems, optimisation of existing electric motor systems (with improved controls and variable-speed drives (VSDs) where suitable), installation of energy efficient lighting, installation of energy-efficient electric motor systems (replacing old inefficient units) and the improvement of mine haul and transport energy efficiency (via training, behaviour change and improved transport management and operation). There is also potential for the use of first generation biodiesel (B5) for transport and handling equipment to reduce emissions from transport albeit at a higher positive abatement cost.

In 2030 (Figure 18) low-cost energy efficient measures continue to show the greatest potential for mitigation, capable of abating 11% of total emissions from coal mining when combined. A proportion of fugitive emissions (equal to 5% of sector total emissions) can be abated by the assumed implementation of coal mine methane recovery and destruction by flaring, and by coal mine methane recovery and use for power and/or heat generation at relatively low marginal abatement costs of R30 and R83/tCO<sub>2</sub>e, respectively. The development of onsite clean power generation also contributes to GHG mitigation (for example, solar PV) by replacing imported power and reducing indirect emissions. However, this measure has a high marginal abatement cost of over R1,300/tCO<sub>2</sub>e.

In 2050 (Figure 19) notably significant and low-cost mitigation options include the implementation of process, demand and energy management systems, optimisation of existing electric motor systems and installation of energy-efficient electric motors. These are all energy efficiency measures which reduce electricity consumption and associated indirect emissions. The availability of second generation biodiesel to supply 50% of the coal mining fleet can cut total fleet emissions by half, and reduce coal mining subsector-wide emissions by 6%, at a modest positive abatement cost.

### 13.2.1.3 Oil and Natural Gas

Based upon forecasted growth from the subsector representative, existing gas exploration and production is expected to cease in 2020. No production is planned beyond 2020 so only measures for the 2020 MACC are presented. The marginal abatement costs for the mitigation measure identified for this sector are high in comparison to other sectors, due to the very short technology lifetime of a maximum of seven years (over which to annualise the investment cost) and the relatively low absolute mitigation potential. Due to the low abatement potential and high marginal abatement costs, the oil and natural gas mitigation measures are not included in the MCA analysis and are hence also excluded from the technical mitigation potential and emissions reduction pathways shown in the rest of the main report.

#### 13.2.1.4 Other energy industries

The MACC analysis for other energy industries makes the following assumptions.

Production, energy and GHG emissions projections are split for existing and new production capacity (added in 2030, 2040 and 2050).

The underlying production, energy consumption and emissions data is based upon data submitted by industry stakeholders to the GHGI and data submitted directly by the stakeholders from the other energy industries sector.

Sector growth is based upon energy supply estimates required to meet forecasted national liquid fuel demand in line with South Africa's Energy Security Master Plan targets, provided by TWG-M members and SAPIA members. New facilities with capacity of 80,000 barrels per day (bpd) of liquid fuel are assumed to be added in 2030, 2040 and 2050, adding an additional 240,000 bpd by 2050 (SAPIA, 2013).

New facilities added in 2030, 2040 and 2050 are assumed to have lower emissions factors and to be more energy efficient, reflecting a more modern design and adoption of best available technologies. Overall carbon intensity is assumed to decrease by 30% compared to existing operations in 2010. The improvement has been allocated proportionally to fugitive, fuel/energy emissions and electricity emissions. These improvements are based on the assumption that all identified measures would be implemented in a new facility (except CCS).

CCS capital and operational costs for capture, transport and storage of CO<sub>2</sub> are based upon IEA benchmark costs (ETSAP, CCS, 2010). The additional annual costs of onshore storage assume US\$5/tCO<sub>2</sub>e transport and US\$10/tCO<sub>2</sub>e onshore storage cost. Storage offshore is assumed to be possible by 2030 and assumes additional annual costs of US\$10/tCO<sub>2</sub>e for transport and US\$20/tCO<sub>2</sub>e for offshore storage cost. For CCS transport costs, 100km is selected as the default transport distance for CO<sub>2</sub> storage onshore within coal fields and 400km is selected for CO<sub>2</sub> storage in offshore geological formations. It is noted that some sources may be located closer or further than the selected distances. To compensate for this uncertainty, the high IEA cost estimate for CO<sub>2</sub> transport is selected.

 $\rm CO_2$  storage capacity is not considered to be limited for the levels of storage proposed by the MACCs based upon assessments of onshore and offshore storages resources in South Africa. The estimated capacity of geological storage in South Africa is at least 150 Gt (150,000 Mt) of CO<sub>2</sub>. The storage potential lies mainly in the capacity of saline formations associated with the oil- and gas-bearing sequences in the Outeniqua, Orange and Durban/Zululand basins. Offshore storage assumes storing in the Zululand Basin with an estimated effective capacity of 460 million tonnes located within 400 km from South Africa's major emissions sources (Council for Geoscience, 2010). It should be emphasised that the estimated geological storage volume is theoretical. Through extensive basin exploration and site characterisation activities, the effective (actual) storage capacity can be established and may be lower than initial estimates.

Injection of process  $CO_2$  emissions from existing plants into onshore coal fields can begin from 2025. New plants which come online in 2030, 2040 and 2050 have CCS installed (at a cost of 60% of the assumed benchmark cost for existing plants). The MACCs assume injection of  $CO_2$  for new facilities into saline reservoirs in offshore basins can begin as early as 2030.

The MACC for 2020 (Figure 17) shows the wide portfolio of mitigation measures that are available. All but one of the identified measures has negative marginal abatement costs. Improved heat systems (using waste heat for maximising existing onsite steam turbine electricity generation capacities), improved existing electric motor system controls and VSDs (matching motor revolutions with load requirements and thus minimising electricity use) and the installation of energy efficient utility motor systems (for example, lighting, compressed air and refrigeration) all have costs of less than -R600/tCO<sub>2</sub>e. Waste gas recovery has a positive cost due to the much higher capital cost and lower potential for uptake relative to other energy efficiency measures proposed.

The annual mitigation potential is transformed in 2030 due to the inclusion of CCS technologies to capture and store process  $CO_2$  emissions in existing and new production facilities. The mitigation potential of CCS dwarfs the potential of the other mitigation options available. The 2030 MACC (Figure 18, option 10) shows that CCS for process emissions from existing plants has the largest mitigation potential of 19

 $MtCO_2e$  in 2030 at a marginal abatement cost of R838 and R973/tCO<sub>2</sub> for storage of CO<sub>2</sub> in coal fields onshore and in offshore saline formations, respectively. The lower marginal abatement cost CCS option for implementing in new facilities has a lower cost of R729/tCO<sub>2</sub> (assuming transport and storage costs for offshore storage) and has potential to mitigate an estimated 6.2 MtCO<sub>2</sub>e in 2030.

As the production of synthetic fuel increases from new facilities built after 2030, so does the potential uptake of CCS resulting in 18.5 MtCO<sub>2</sub>e of process emission mitigated in 2050 (Figure 19). Combined, CCS technologies can potentially mitigate 38 MtCO<sub>2</sub>e. The marginal abatement costs of the CCS measures remain constant compared to 2030, whilst the marginal abatement costs of the energy efficiency measures drop as assumed underlying energy prices and cost savings increase over time.

#### 13.3 Technical Mitigation Potential

A summary of technical mitigation potential in 2020, 2030 and 2050 for all sectors and subsectors covered in the assessment of the energy sector is shown in Table 17 below.

In calculating total technical mitigation potential for the energy sector, abatement estimates for the other energy industries and petroleum refining sectors show only the impact of measures which can be implemented in the sector. The estimates do not show savings which might occur due to a reduced need for new capacity in the sector if demand for liquid fuel is reduced as a result of successful implementation of mitigation options in the transport sector. If all transport mitigation options were to be successfully implemented then emissions in the energy sector could be reduced by a further 20.3 MtCO<sub>2</sub> in 2050. This interaction between the transport and energy sectors is fully taken account of in the national level analysis carried out in ChapterV of this report.

| Sector            | Subsector                       | 2020   | 2030     | 2050    |
|-------------------|---------------------------------|--------|----------|---------|
| Power             | Power                           |        | 37,   49 | 416,555 |
| % of total mitiga | tion potential                  | 86.47% | 79.48%   | 89.16%  |
| Non-power         | Coal mining                     | 385    | I,284    | 3,112   |
|                   | Oil and gas <sup>12</sup>       | 0      | 0        | 0       |
|                   | Other energy industries         | 3,529  | 31,181   | 43,630  |
|                   | Petroleum refining              | 558    | 2,951    | 3,891   |
|                   | Subtotal                        | 4,472  | 35,415   | 50,632  |
|                   | % of total mitigation potential |        | 20.52%   | 10.84%  |
| Total mitigation  | Total mitigation potential      |        | 172,565  | 467,186 |

Table 17: Summary of technical mitigation potential for the energy sector, including a breakdown by sector and subsector and showing results for 2020, 2030 and 2050 (ktCO<sub>2</sub>e)

In summary, abatement options for the power sector dominate abatement potential for the energy sector, accounting for between 79% and 89% of total mitigation potential. The second largest contributor is the other energy industries sector, representing 3.5, 31.2 and 43.6 MtCO<sub>2</sub>e in 2020, 2030 and 2050, respectively.

Mitigation potential expressed relative to the reference case WEM projection is shown for each sector and subsector in Table 18. Results indicate an 8.8%, 34.9% and 49% reduction relative to the WEM projection in 2020, 2030 and 2050, respectively.

Table 18: Percentage reduction in reference WEM emissions for the energy sector, assuming all technical mitigation potential is implemented

| Sector              | 2020 | 2030  | 2050  |
|---------------------|------|-------|-------|
| Power               | 7.6% | 27.8% | 43.7% |
| Non-Power           | 1.2% | 7.2%  | 5.3%  |
| Energy Sector Total | 8.8% | 34.9% | 49.0% |

A similar analysis conducted for the sub-sectors which comprise the non-power energy sector is shown in Table 19. Results indicate a total mitigation potential of 7%, 43% and 42% relative to the reference case projection. The vast majority of these potential savings originate from the other energy industries subsector:

# Table 19: Percentage reduction in reference WEM emissions for the non-power energy sector, assuming all technical mitigation potential is implemented

| Sector                           | 2020 | 2030  | 2050  |
|----------------------------------|------|-------|-------|
| Coal Mining                      | 0.6% | I.5%  | 2.6%  |
| Oil and Gas                      | 0.0% | 0.0%  | 0.0%  |
| Other Energy<br>Industries       | 5.5% | 37.6% | 36.1% |
| Petroleum Refining               | 0.9% | 3.6%  | 3.2%  |
| Non-Power Energy<br>Sector Total | 7.0% | 42.7% | 41.9% |

# 13.4 WAM Projection

Assuming that all available mitigation measures are implemented (that is, that all technically-feasible mitigation potential is implemented according to estimates provided in the sectoral MACCs), the resulting WAM abatement projection for the energy sector is shown in Figure 20. A similar graphic showing a breakdown between subsectors within the non-power energy sector is shown in Figure 21. Note that emissions from the power sector have been reallocated to end users and electricity related emissions savings have been adjusted for the progressive reduction of carbon intensity of the electricity supply over time.

12. Mitigation potential for measures in the oil and gas sector have been excluded as outliers from this portion of the analysis. Please refer to Technical Appendix C: Energy Sector for details of abatement and marginal abatement costs.

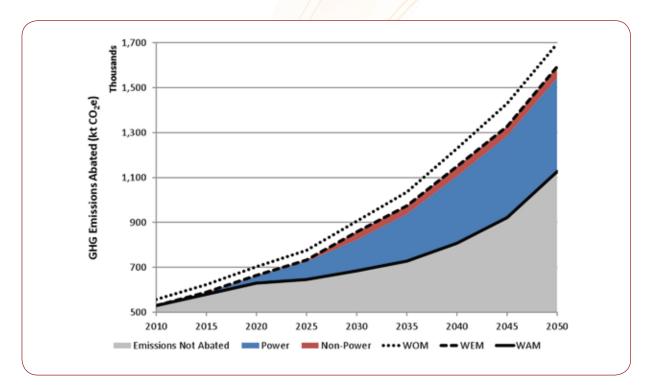



Figure 20: WAM scenario for the energy sector, showing a breakdown between the power and non-power sectors. Emissions from the power sector have been reallocated to end users and electricity related emissions savings have been adjusted accordingly. Reference case WOM and WEM emission projections are also shown.

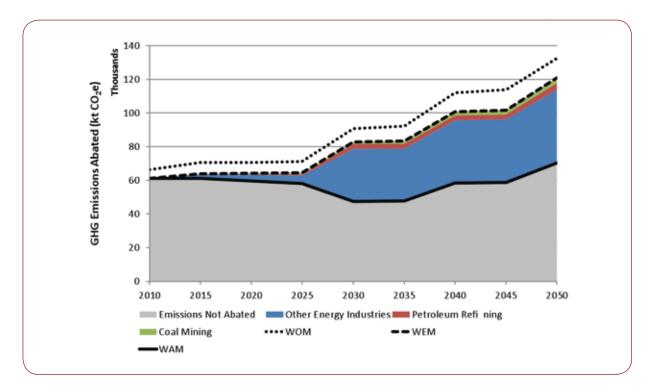



Figure 21: WAM scenario for the non-power sector, showing a breakdown between subsectors. Emissions from the power sector have been reallocated to end users and electricity related emissions savings have been adjusted accordingly. Reference case WOM and WEM emission projections are also shown.

# 14. The Industry Sector

This chapter identifies the GHG emissions mitigation potential for the South African industry key sector. The mitigation potential is presented in the form of marginal abatement cost curves (MACCs) for the years 2020, 2030, and 2050 ranking available mitigation options in terms of their marginal abatement cost. The mitigation potential presented is considered to be technically achievable assuming that all identified mitigation technologies have been technically proven or will be proven prior to becoming available. The GHG emissions sources for the sector include IPCC emissions sector 1A2, combustion emissions from manufacturing industries and construction, and the relevant parts of IPCC sector 2, industrial process emissions. Mitigation opportunities for emissions associated with fuel combustion in residential and non-residential (commercial and institutional) buildings, IPCC sector 1A4, are also included in this chapter at the request of the TWG-M. The industry sectors examined and sources of emissions, as classified by the IPCC categories, are listed in Table 20 below.<sup>13</sup>

#### Table 20: Industrial subsectors (with IPCC emissions source classifications) included in the mitigation analysis

| Industry                   |                                                                                                                                   | IPCC emissions category |                                          |  |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------------|--|
| sectors (and<br>buildings) | Subsector                                                                                                                         | Fuel combustion (IA)    | Process Emissions (2)                    |  |
| Metals<br>Production       | Iron and steel production                                                                                                         | I A2a                   | 2C1                                      |  |
|                            | Ferroalloy production                                                                                                             | I A2a                   | 2C2                                      |  |
|                            | Primary aluminium production                                                                                                      | I A2b                   | 2C3                                      |  |
| Minerals<br>Production     | Cement production                                                                                                                 | I A2f                   | 2A1                                      |  |
|                            | Lime production                                                                                                                   | I A2f                   | 2A2                                      |  |
| Chemicals<br>Production    | Chemicals production (including ammonia, nitric acid,<br>carbide, titanium dioxide, petrochemical and carbon<br>black production) | I A2c                   | 2B (including 2B1, 2B2,<br>2B5, 2B6 2B8) |  |
| Mining                     | Underground and surface mining (non-coal products)                                                                                | I A2i                   |                                          |  |
| Buildings                  | Commercial/institutional                                                                                                          | I A4a                   |                                          |  |
|                            | Residential                                                                                                                       | I A4b                   |                                          |  |
| Other                      | Pulp and paper production                                                                                                         | I A2d                   |                                          |  |

13. Note that reference case projections cover all subsectors under IPCC emissions sector 1A2, combustion emissions from manufacturing industries and construction, and are discussed in Technical Appendix D. Only a subset of those sectors has been covered in the mitigation potential assessment discussed below, due to data availability.

Reference GHG emissions projections are based on all activities identified in the national GHGI for 2010 and mitigation opportunities are presented for all sectors listed in Table 20. Emissions from the use of electricity have been allocated to the end use sectors. GHG mitigation opportunities are presented that cover emissions from three separate sources, described below:

- Emissions from industrial processes, from the use of greenhouse gases in products, and from non-energy uses of fossil fuel.
- Emissions from the use of fuels in stationary combustion.
   Emissions result from the combustion of fuels in order to provide heat or mechanical work.
- Indirect emissions from the consumption of electricity, where fossil fuels are consumed in order to generate the electricity.

A detailed assessment of mitigation and the key assumptions driving these estimates is provided in Technical Appendix D: Industry Sector. The summaries provided below are drawn directly from that appendix.

All of the mitigation measures and associated estimates of abatement potential and marginal abatement costs in the industry sector are presented in Table 32 for each of the three snapshots in time considered in this study: 2020, 2030 and 2050. The identifier associated with each measure is used in the legend of the MACC summaries per sector shown below. These identifiers are used consistently throughout the report and can be used to look up measures and associated values in Table 32.

In all cases, detailed assumptions for each measure are documented in the technical appendix. These assumptions include:

- The emissions reduction potential and energy saving potential for each measure
- The costs, availability and lifetime of the mitigation measures
- The starting point, penetration rate and uptake of each measure

## 14.1 Sectoral Growth Assumptions

A key assumption driving the reference emissions projections and hence the estimates of abatement potential is the sector growth rate. These growth rates are based on the moderate growth rate defined by National Treasury. The moderate growth scenario forecasts real GDP growth of 4.2% per annum over the medium-term and 4.3% per annum over the long-term (2021–2050) according to the 2012 Medium Term Budget Policy Statement (National Treasury, 2012). In agreement with guidance provided by the TWG-M, all sector growth rates are aligned to the national growth target. For each of the subsectors considered within the metals sector, the average growth rates between 2010 and 2050 are shown in Table 21.

| Table 21:  | Average GDP | growth rates f | or industry | subsectors ( | (ber annum) |
|------------|-------------|----------------|-------------|--------------|-------------|
| TODIC 21.1 | incluge ODI | growanaces     | or mouse y  | Subsectors   | per annany  |

| Sector    | Subsector                      | Sectoral<br>growth rate                          |
|-----------|--------------------------------|--------------------------------------------------|
|           | Aluminium production           | 4.2%                                             |
| Metals    | Ferroalloys production         | 4.2%                                             |
|           | Iron and steel production      | 3.9%                                             |
| Minerals  | Cement production              | 4.2%                                             |
|           | Lime production                | 4.2%                                             |
| Chemicals | Chemicals production           | 4.1%                                             |
| Mining    | Surface and underground mining | 3.8%-4.3% <sup>14</sup>                          |
|           | Residential                    | Not based                                        |
| Buildings | Commercial/institutional       | on macro-<br>economic<br>modelling <sup>15</sup> |
| Other     | Pulp and paper production      | 3.8%                                             |

As stated above, GDP growth in individual industry subsectors is aligned to targeted levels of national economic growth and projections of growth in individual sectors driven by the INFORUM model. It is noted that actual growth in the manufacturing and mining sectors has been lagging overall GDP growth for some time and is likely to continue to do so in the future, particularly in the period to 2020. As both the process emissions and those arising from energy use allocated to each sector are proportional to the GDP growth, the overestimation of emissions in these sectors as a result of the methodology needs to be taken into account when interpreting the estimates of mitigation potential and marginal abatement costs provided below.

### 14.2 Metals Sector

#### 14.2.1 Marginal Abatement Cost Curves

Marginal abatement cost curves for the metals sector for the 2020, 2030 and 2050 snapshots are shown in Figure 22 to Figure 24.

In 2020 a total of 12.2 MtCO<sub>2</sub>e of abatement potential has been identified in the metals sector. A total of 39% of the available mitigation potential (4.8 MtCO<sub>2</sub>e) can be achieved through measures which have a negative marginal abatement cost. In 2030, a total of 35.9 MtCO<sub>2</sub>e of abatement potential has been identified, 48% (17.2 MtCO<sub>2</sub>e) of which can be achieved through measures with a negative marginal abatement cost. In 2050, a total of 86.5 MtCO<sub>2</sub>e of abatement potential has been identified, 49% (42 MtCO<sub>2</sub>e) of which can be achieved through measures which have negative marginal abatement cost.

14. Sector growth ranges from 3.8 to 4.3% per annum on average from 2010 to 2050 for various mined products, in line with the emissions projection assumptions and the underlying macroeconomic model.

15. The emissions projections for the commercial sector are based on building stock growth and historical energy activity data in the sector."

1,500 1,000 Marginal Abatement Cost (R/tCO2e) 500 000 4,000 6,000 8,000 10,000 12,000 -500 -1,000 -1,500 GHG Emissions Abated (kt CO2e) ■ 62 ■ 58 ■ 63 ■ 53 ■ 61 ■ 46 ■ 49 ■ 48 ■ 54 ■ 52 ■ 76 ■ 74 ■ 60 ■ 72 **77 • 64 • 50 • 59 • 73 • 57 • 75 • 51 • 70 • 69 • 65 • 55 • 56** 



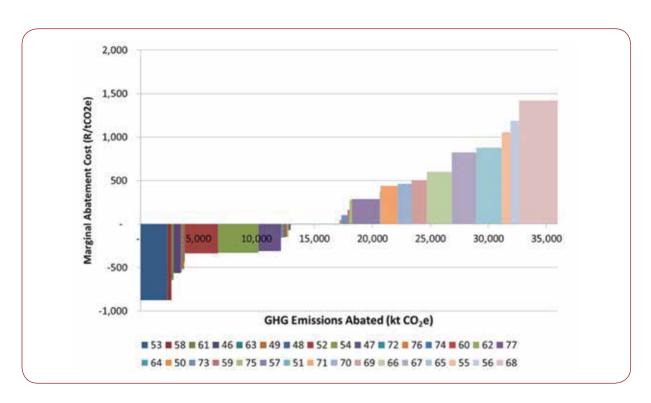



Figure 23: Marginal abatement cost curve for the metals sector in 2030

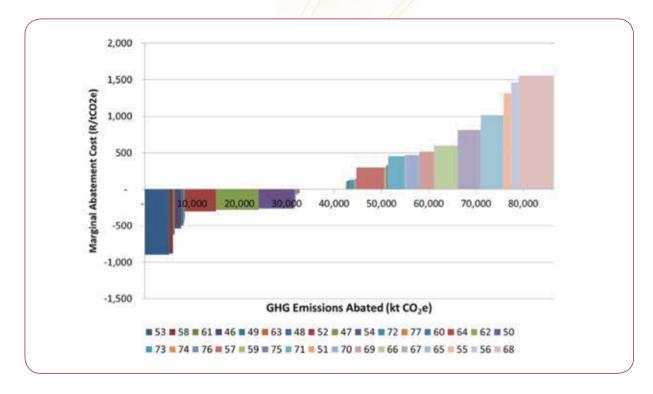



Figure 24: Marginal abatement cost curve for the metals sector in 2050.

#### 14.2.1.1 Primary aluminium production

For the objective of reducing energy consumption and GHG emissions, the mitigation analysis assumes that a 20% production switch from primary operations to secondary production techniques is possible by 2030 by increasing recycling.

The process emission factors applied for prebake production technology are based upon IPCC guidelines and are in line with the South Africa GHGI assumptions. It is noted that these are higher than the emission factors proposed by the TWG-M members representing the primary aluminium sector.

The scope for emissions reductions in primary aluminium production is not as extensive when compared to the steel making and ferroalloy industries. This is largely due to the fact that 100% of the industry in South Africa uses centre worked prebake (CWPB) technology with point feeding – the most energy efficient option available. Further, significant measures have already been taken to reduce process emissions caused by the anode effect. Also, a large proportion of production facilities already uses best available production techniques and advanced process controls.

Sector growth is assumed to be 4.2% per annum on average from 2010 to 2050 in line with the emissions projection assumptions and the underlying macroeconomic model.

In 2020, the total abatement potential amounts to just over 844 ktCO<sub>2</sub>e (4% of the WEM emissions projection) with best process selection for primary aluminium smelting and advanced process control techniques offering the best scope for mitigation at the least marginal abatement cost.

In 2030, the progressive switch from primary production techniques and replacement with secondary production (option 47 in Table 32) contributes to total abatement potential of 3 MtCO<sub>2</sub>e/year (11% of the reference WEM emissions projection for the primary aluminium production subsector), as shown in Figure 23. Secondary aluminium production using recycled scrap raw material requires significantly less energy compared to primary aluminium production and offers mitigation potential of almost 1.9 MtCO<sub>2</sub>e/year at a negative marginal abatement cost of -R311/tCO<sub>2</sub>e.

Switching to less electricity intensive secondary production techniques in 2050 increases the mitigation potential (Figure 24). Of course, shifting from the primary to the secondary production pathway is limited by access to scrap aluminium and would take place gradually as production facilities reach the end of their lives and are replaced.

#### 12.1.1.2 Iron and steel production

To reduce sector emissions, it is assumed that 40% of crude steel can be produced from the secondary production route of electric arc furnaces (EAF) and scrap material by 2030 (an increase of 11% from 29% in 2010). This measure assumes a gradual shift from the primary production pathway of blast furnace (BF) and basic oxygen furnace (BOF) over a 20-year period starting in 2010. It is also assumed that the increased demand for scrap metal can be met. Again, for the purposes of abatement, it is assumed that 40% of crude steel is produced from the smelting of direct reduced iron (DRI) within EAFs by 2030 (an increase of 27% from 13% in 2010). The increase in DRI production assumes that the necessary additional supplies of gas are available. The remaining 20% of production in 2030 is assumed to come from the BF and BOF route (a reduction of 38% from 58% of total production in 2010).

Sector growth is assumed to be 3.9% per annum on average from 2010 to 2050 in line with the emissions projection assumptions and the underlying macroeconomic model.

Energy efficiency measures, such as implementation of BOF waste heat and gas recovery, energy monitoring and management system, and top gas pressure recovery turbines are the lowest-cost measures in 2020 (Figure 22). These measures have negative marginal abatement costs due to their significant energy cost saving potential and relatively low capital cost. The most significant and low-cost abatement option is to shift from traditional energy-intensive primary production processes of iron ore reduction using blast furnaces to secondary techniques using EAFs and maximising scrap raw material. This has the potential to mitigate some 1,465 ktCO<sub>2</sub>e in 2020 (although the uptake of this measure is limited by the availability and price of scrap metal).

Replacing further production from the counterfactual BF and BOF route to DRI and EAF could mitigate over 1,700 ktCO<sub>2</sub>e in 2020 (for example, by implementing Midrex and HYL technologies that produce DRI from pellets by gas-based direct reduction in a shaft furnace). However, this has an abatement cost of over R410/tCO<sub>2</sub>e and uptake may be limited by access to natural gas or coke oven gas. Building state-of-the-art power plants has significant abatement potential (by installing advanced, high-efficiency power generation equipment to use waste process gas to generate electricity and thus replace grid power). However, this also has a positive abatement cost of over R600/tCO<sub>2</sub>e.

The wider portfolio of available mitigation technologies in the iron and steel sector in 2030 (Figure 23) is apparent in the introduction of DRI – ULCORED (a more cost effective DRI production technique) and CCS technologies (capable of capturing and storing process and fuel combustion  $CO_2$  emissions). The total mitigation potential of 19,500 ktCO<sub>2</sub>e

in 2030 or 41% of total projected emissions is considered to be technically achievable. The DRI and EAF alternative to the BF and BOF steelmaking pathway has a combined abatement potential of almost 8,200 kt CO<sub>2</sub>e in 2030 at marginal abatement costs of less than R505 and -R4/tCO<sub>2</sub>e, respectively. Capturing CO<sub>2</sub> at the blast furnace (for example, by implementing top gas-recycling blast furnace and post-combustion technologies has the potential to abate over 4,260 ktCO<sub>2</sub>e in 2030, at a cost of R600 and R825ktCO<sub>2</sub>e, respectively (top gas-recycling blast furnace also saves energy and is therefore the cheaper option). Implementing state-of-the-art power plant with CCS is the most expensive mitigation option at over R1,400/tCO<sub>2</sub>e.

In 2050 (Figure 24), retrofitting CCS to blast furnaces combined with top gas-recycling blast furnaces offers a realistic solution for maximising energy efficiency whilst minimising emissions from the blast furnace primary production pathway with marginal abatement costs of  $R600/tCO_2e$ . However, CCS for power plants is more costly and emphasises the associated high investments costs. The clear leaders in terms of abatement potential are the shift away from energy intensive primary techniques to the more energy efficient secondary techniques (EAFs and use of scrap metal) and increased production using DRI. The option with the highest marginal abatement cost is implementing state-of-the-art power plants (with and without CCS).

#### 14.2.1.3 Ferroalloys production

The share of furnace technology in operation across the sector is assumed to be 40% semi-closed and 60% closed type in 2010. For the objective of increasing energy efficiency and GHG abatement, the analysis assumes that a production switch of 25% from semi-closed to the more energy efficient closed furnace type is technically possible by 2030, giving a split of 15% semi-closed and 85% closed. The mitigation analysis also assumes a 20% switch from carbon reductants (for example, coke and coal) to biocarbon sources (for example, charcoal and woodchips) is possible by 2030.

Sector growth is assumed to be 4.2% per annum on average from 2010 to 2050 in line with the emissions projection assumptions and the underlying macroeconomic model.

Several low-cost mitigation options are available in 2020 (Figure 22). The replacement of submerged arc semi-closed furnaces with closed type furnaces offers the lowest marginal abatement cost to reduce emissions by 877 ktCO<sub>2</sub>e/year at a marginal abatement cost of -R840/tCO<sub>2</sub>e. Implementation of best available production techniques and waste gas recovery and power generation (on closed furnace types) also offer negative marginal abatement cost options to reduce carbon intensity.

In 2030 (Figure 23), the deployment of waste heat recovery and power generation projects adopting Rankine Cycle and Organic Rankine Cycle technologies is unlikely as other low-cost effective energy efficiency options are available. The option to use bio-carbon reductants instead of coal/coke offers a zero-carbon solution capable of abating almost 2,400  $ktCO_2e$ /year at a relatively modest marginal abatement cost of R290/tCO<sub>2</sub>e.

By 2050 (Figure 24), the total annual mitigation potential from the ferroalloys sector has increased to over 30 million tCO<sub>2</sub>e/ year or 28% of the reference WEM emissions projection with the notable options being the replacement of submerged arc semi-closed furnaces with the closed type, implementation of best available production techniques and using CO<sub>2</sub> gas from closed furnaces to generate power onsite and reduce electricity imports (and associated indirect emissions).

#### 14.3 Minerals Sector

#### 14.3.1 Marginal Abatement Cost Curves

Marginal abatement cost curves for the minerals sector for the 2020, 2030 and 2050 snapshots are shown in Figure 25 to Figure 27.

In 2020, a total of 1.6 MtCO<sub>2</sub>e of abatement potential has been identified in the minerals sector. A total of 67% of the available mitigation potential (1 MtCO<sub>2</sub>e) can be achieved through measures which are cost effective (that is, their marginal abatement cost in R/tCO<sub>2</sub>e is negative). In 2030, a total of 4.5 MtCO<sub>2</sub>e) can be achieved through measures which ave a negative marginal abatement cost. In 2050, a total of 22 MtCO<sub>2</sub>e of abatement potential has been identified, 57% (5.2 MtCO<sub>2</sub>e) of which can be achieved through measures which have a negative marginal abatement cost.

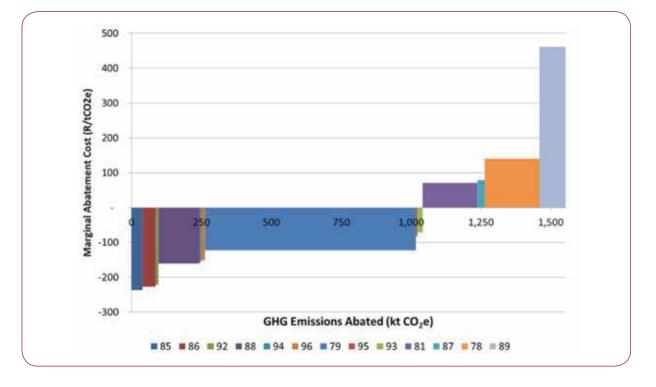



Figure 25: Marginal abatement cost curve for the minerals sector in 2020






Figure 27: Marginal abatement cost curve for the minerals sector in 2050

#### 14.3.1.1 Cement production

For the objective of reducing emissions, the analysis assumes that a 25% fuel switch from fossil fuels to zero-carbon waste and biomass fuels is technically possible by 2030 (the proportional split of fuel is assumed to be 99% fossil and 1% waste/ biomass in 2010). The analysis assumes a reduction in clinker content of cement is possible from 69% on average in 2010 down to 60% on average by 2030. The MACCs also assume that 2.5% of total cement production can be supplied by geopolymer production techniques by 2040. Sector growth is assumed to be 4.2% per annum on average from 2010 to 2050 in line with the emissions projection assumptions and the underlying macroeconomic model.

The abatement option with the lowest marginal abatement cost in 2020 (Figure 25) is the reduction of clinker content of cement products to 66% on average (capable of mitigating 754 ktCO<sub>2</sub>e/year at a negative marginal abatement cost of -R122/tCO<sub>2</sub>e). Improved electric motor system controls and VSDs and advanced energy management systems also have negative marginal abatement costs of -R227 and R -237/ tCO<sub>2</sub>e, respectively.

By 2030 (Figure 26), more technologies become available, thereby increasing the total annual mitigation potential. These include the implementation of waste heat recovery from kilns and coolers and the production of geopolymer cement (replacing standard Portland cement), with marginal abatement costs which range from R172/tCO<sub>2</sub>e to over R434/tCO<sub>2</sub>e, respectively. Using waste materials as fuel also shows good potential with a lower marginal abatement cost compared to 2020.

By 2050 (Figure 27), the availability of CCS technologies including back-end chemical absorption and oxyfuel (with marginal abatement costs of R910 and R820/tCO<sub>2</sub>e, respectively) offers a much wider opportunity to reduce emissions of over 15 million tCO<sub>2</sub>e/year in total compared to the reference case WEM projection.

#### 14.3.1.2 Lime production

For the objective of reducing emissions, the analysis assumes that 90% of fuel consumed in 2010 is from fossil sources and 10% is waste/biomass fuel. By 2040, a 40% fuel switch from fossil fuel to zero-carbon waste and biomass fuels is assumed to be technically possible (that is, by 2040, 50% of fuel is from fossil sources and 50% from waste/biomass). The MACCs also assume that by 2050, 80% of all kilns are vertical/parallel flow regenerative kiln (PFRK) types and the remaining 20% are rotary/other type (in 2010, it is assumed that 100% are of rotary or other non-vertical kiln types).

Sector growth is assumed to be 4.2% per annum on average from 2010 to 2050 in line with the emissions projection assumptions and the underlying macroeconomic model.

In 2020, the identified technical mitigation potential for lime production is almost 295 ktCO<sub>2</sub>e/year or 7% compared to the WEM emissions projection scenario. The MACC displayed in Figure 25 shows that implementing shaft preheaters is the most significant option, with negative abatement costs of -R33/tCO<sub>2</sub>e. The replacement of rotary kilns with vertical shaft kilns or PFRKs also offers a significant abatement option, albeit, at a much higher marginal abatement cost.

In 2030 (Figure 26), the mitigation potential increases to 822 ktCO<sub>2</sub>e/year equivalent to 15% of the WEM reference emissions projection, with the use of alternative fuels including waste and biomass increasing the opportunity for mitigation. The implementation of advanced energy monitoring and management systems, improved heat systems including heat exchanger efficiencies and improved electric motor system controls and VSDs are all mitigation options with low marginal abatement costs, although their impact is limited. The implementation of shaft preheaters is still the most significant mitigation option. The replacement of rotary kilns with vertical kilns or PFRK type again shows significant potential for abatement, albeit still at a much higher cost.

The MACC for 2050, displayed in Figure 27, shows the availability of CCS at a cost of over R800/tCO<sub>2</sub>e significantly increases the mitigation potential to 7 million tCO<sub>2</sub>e/year. This is equivalent to 56% of the WEM reference emissions projection. The marginal abatement cost of replacing rotary kilns with vertical kilns or PFRKs increases from R800 in 2030 to over R1,300/tCO<sub>2</sub>e in 2050. This is the result of an increased use of alternative fuels (including waste and biomass) in 2030 and 2050 which reduces the carbon intensity of lime production and therefore reduces the carbon reduction potential of other energy saving measures, thereby increasing their marginal abatement cost.

#### 14.4 Chemicals Production Sector

The chemical sector as covered in this report includes the production of basic chemicals and other chemicals including production of ammonia, nitric acid, carbide, titanium dioxide, petrochemicals and carbon black. Disaggregated product data is only available for these chemicals and not for all chemicals produced in the basic and other chemicals subsectors. For the purposes of the study, energy efficiency measures have been assumed to apply equally to all production processes.

Mitigation potential of product specific measures in the chemical sector was difficult to assess due to a lack of energy consumption and direct fuel/indirect electricity emissions data broken down by chemical product. In particular it was not possible to estimate the mitigation potential associated with the implementation of tail-gas energy recovery for combined heat and power plants (CHP) within carbon black

production. It should also be noted that ammonia production in South Africa is integrated with synthetic fuels and chemicals production and most of the potential for emissions reduction and mitigation associated with ammonia production is captured in the other energy industries sector. Therefore, conventional measures used to assess mitigation potential for ammonia are not applicable to existing facilities but will be applicable to new facilities on the assumption that they adopt conventional technology.

The difficulties in projecting emissions for the chemicals sector mean that the current WEM projection is likely to underestimate total emissions and brings into question the integrity of the underlying data based on two difference sources (industry data reported to the Chemical and Allied Industries' Association (CAIA) and the DoE 2009 Energy Balance(DoE, 2013b)). Action should be taken to improve the quality, coverage and granularity of production, energy and emissions data where possible. Sector growth is assumed to be 4.1% per annum on average from 2010 to 2050 in line with the emissions projection assumptions and the underlying macroeconomic model.

#### 14.4.1 Marginal Abatement Cost Curves

Marginal abatement cost curves for the chemicals production subsector for the 2020, 2030 and 2050 snapshots are shown in Figure 28 to Figure 30.

In 2020, a total of 938 ktCO<sub>2</sub>e of abatement potential has been identified in the chemicals sector. A total of 68% of the available mitigation potential (641 ktCO<sub>2</sub>e) can be achieved through measures with negative marginal abatement costs. In 2030, a total of 2.6 MtCO<sub>2</sub>e of abatement potential has been identified, 66% (1.7 MtCO<sub>2</sub>e) can be achieved through measures with negative marginal abatement costs. In 2050, a total of 6.2 MtCO<sub>2</sub>e of abatement potential has been identified; 24% (1.5 MtCO<sub>2</sub>e) can be achieved through measures with a negative marginal abatement cost.

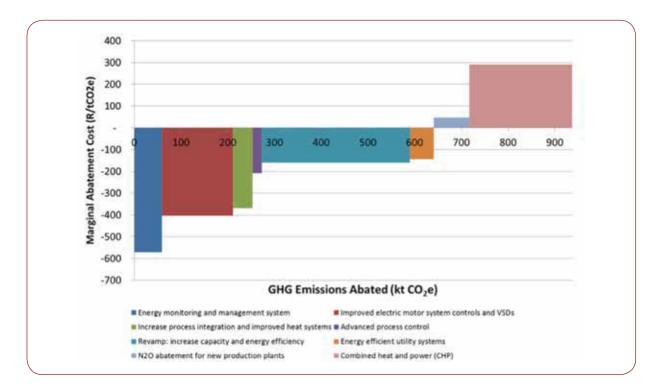



Figure 28: Marginal abatement cost curve for the chemicals sector in 2020

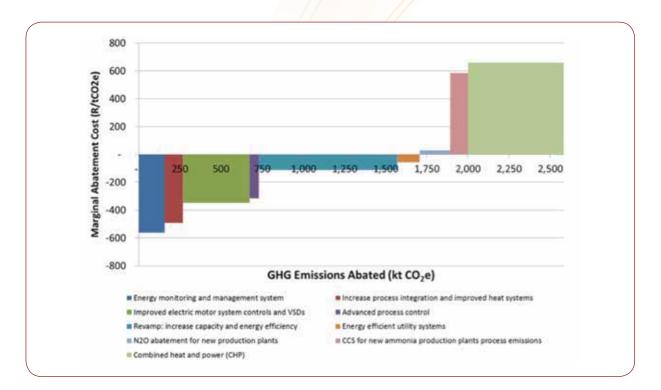



Figure 29: Marginal abatement cost curve for the chemicals sector in 2030

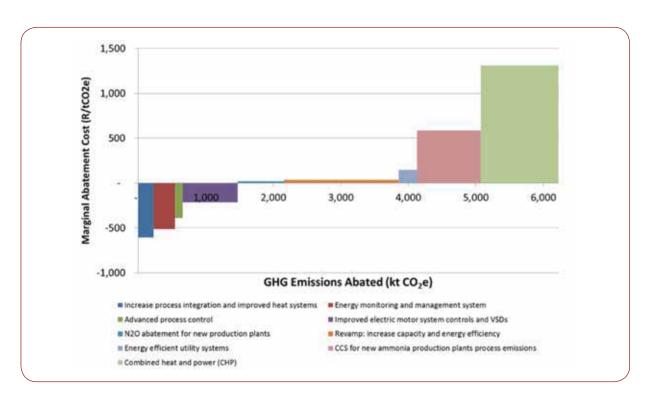



Figure 30: Marginal abatement cost curve for the chemicals sector in 2050

In 2020 (Figure 28), there are a number of opportunities with negative marginal abatement costs available to mitigate both process and fuel combustion emissions. These include energy efficiency measures to implement advanced energy monitoring and management systems, improved electric motor system controls and installation of variable speed drives (VSDs), where appropriate, and increased process integration and revamping of old facilities to improve overall production and energy efficiency. Implementing onsite CHP generation systems also offers major scope for emission reductions but at a positive abatement cost.

In 2030 (Figure 29), the priority order of mitigation options in terms of marginal abatement cost remains similar to 2020. The identified technical mitigation potential increases to almost 2.6 MtCO<sub>2</sub>e/year compared to the WEM emissions projection or 13% of total emissions due to wider uptake of technologies. Energy management systems and improved electric motor systems remain the options with the lowest marginal abatement costs while complete waste site revamps and CHP offer the biggest scope for mitigation. Nitrous oxide (N<sub>2</sub>O) abatement is only applicable to new production facilities as most nitric acid production plants in South Africa have already implemented N2O abatement projects partially financed under the UNFCCC's Clean Development Mechanism (CDM). Carbon capture and storage (CCS) for ammonia production becomes available and provides an option to reduce process emissions.

The mitigation potential in 2050 increases to over 6.2 million  $tCO_2e$ /year compared to the WEM emissions projection or 15% of total emissions. CCS is fully implemented across new production facilities and capable of reducing process emissions by 945  $tCO_2e$ /year by 2050 (Figure 30). The marginal abatement cost of R585/ $tCO_2e$  for this measure is lower than the cost of CCS in other industries due to the high purity of the  $CO_2$  in the process emissions resulting in lower capture and compression costs. The portfolio of energy efficiency measures available together offer the largest mitigation opportunity at negative marginal abatement costs.

#### 14.5 Mining Sector

The mining sector encompasses mined materials from surface and underground mines, including gold, platinum group metals (PGMs), diamonds, iron ore, chromite, manganese and other mined materials. This sector does not include coal mining. GHG emissions from coal mining and handling are included in the energy sector. For the implementation of biodiesel mitigation measures, MACCs assume that a maximum of 50% of the mining fleet can be fuelled by biodiesel. This assumes that first generation biodiesel is available from 2010 and second generation biodiesel is available from 2020. In both cases, it is assumed that the infrastructure and planning is in place to ensure 50% of the fleet can be supplied.

Sector growth ranges from 3.8 to 4.3% per annum on average from 2010 to 2050 for various mined products, in line with the emissions projection assumptions and the underlying macroeconomic model.

#### 14.5.1 Marginal Abatement Cost Curves

Marginal abatement cost curves for the mining sector for the 2020, 2030 and 2050 snapshots are shown in Figure 31 to Figure 33.

In 2020, a total of 5.6 MtCO<sub>2</sub>e of abatement potential has been identified in the mining sector. A total of 66% of the available mitigation potential (3.7 MtCO<sub>2</sub>e) can be achieved through measures which have negative marginal abatement costs. In 2030, a total of 16.8 Mt CO<sub>2</sub>e of abatement potential has been identified; 65% (10.9 MtCO<sub>2</sub>e) of which can be achieved through measures which have negative marginal abatement costs. In 2050, a total of 45.8 MtCO<sub>2</sub>e of abatement potential has been identified; 64% (29 MtCO<sub>2</sub>e) of which can be achieved through measures which have negative marginal abatement potential has been identified; 64% (29 MtCO<sub>2</sub>e) of which can be achieved through measures which have negative marginal abatement costs.

For the implementation of biodiesel mitigation measures, it is assumed that a maximum of 50% of the mining fleet can be fuelled by biodiesel. This assumes that first generation biodiesel is available from 2010 and second generation biodiesel is available from 2020. In both cases, the estimates assume that the infrastructure and planning is in place to ensure 50% of the fleet can be supplied.

In 2020 (Figure 31), several energy efficiency measures are available with negative abatement costs including the implementation of process, demand and energy management systems, installation of energy-efficient electric motor systems, optimisation of existing electric motor systems (with improved controls and VSDs, where suitable), installation of energy efficient lighting and the improvement of mine haul and transport energy efficiency (via training, behaviour change and improved transport management and operation).

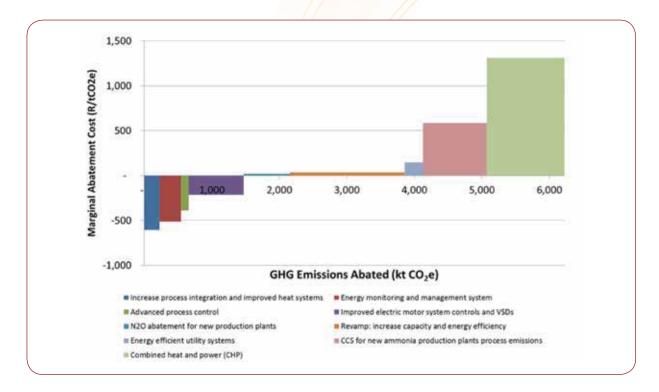



Figure 31: Marginal abatement cost curve for the mining sector in 2020

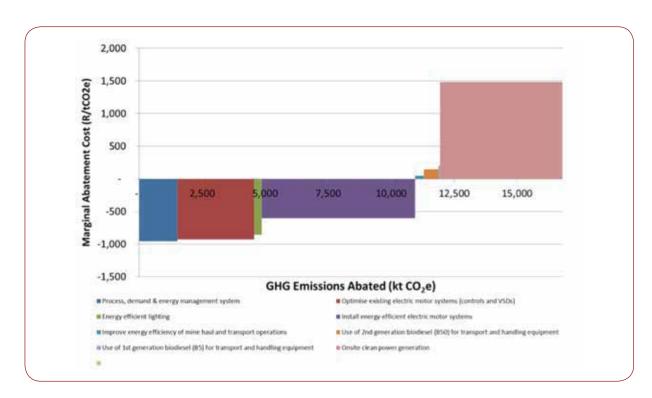



Figure 32: Marginal abatement cost curve for the mining sector in 2030

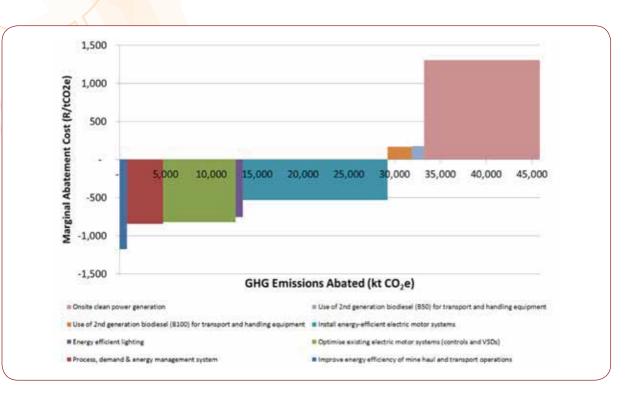



Figure 33: Marginal abatement cost curve for the mining sector in 2050

In 2030 (Figure 32), the mitigation potential in the mining sector increases to 16,807 ktCO<sub>2</sub>e/year. This is equivalent to 23% of the reference WEM emissions projection driven largely by energy efficiency measures with negative marginal abatement costs. The development of onsite clean power generation also contributes to GHG mitigation (for example, solar PV) by replacing imported power and reducing indirect emissions. However, this measure has a high marginal abatement coast of over R1,000/tCO<sub>2</sub>e.

The overall abatement potential in 2050 (Figure 33) increases to 45,847 ktCO<sub>2</sub>e/year – equivalent to 24% of the reference emissions projection for the mining subsector. The mitigation options with large potential (and negative marginal abatement costs) are the implementation of process, demand and energy management systems, installation of energy-efficient electric motor systems and optimisation of existing electric motor systems. These are all energy efficiency measures which reduce electricity consumption and associated indirect emissions. The availability of biodiesel for reducing fleet emissions has a much smaller impact in comparison.

#### 14.6 Buildings Sector

In the case of emission projections and estimates of mitigation from the residential, commercial and institutional buildings subsectors, the starting point, penetration rate and uptake of each measure are all based on the technology proposed by the South African TIMES energy model (SATIM) 'upper bound' scenario (ERC, 2013).

#### 14.6.1 Marginal Abatement Cost Curves

#### 14.6.1.1 Commercial/institutional buildings

The identified mitigation potential for commercial and institutional buildings in South Africa is estimated at 7.5 Mt-CO<sub>2</sub>e in 2020 compared to the reference WEM emissions projection (equivalent to 13% of total projected emissions). Several mitigation options with negative marginal abatement costs (MACs) are available to reduce emissions from commercial and institutional buildings, as shown by the MACC in Figure 34. Installation of heating, ventilation and air conditioning (HVAC) systems with heat recovery in new buildings have the lowest marginal abatement costs, followed closely by efficient lighting, energy efficient appliances and HVAC equipment with variable speed drives (VSDs). Construction of passive buildings with improved thermal design offers the largest single mitigation potential, but at a much higher marginal abatement cost (as the total cost of the building is included in the marginal abatement cost calculation).

In 2030 (Figure 35), the overall mitigation potential increases to over 15 MtCO<sub>2</sub>e, 22% of the reference emissions pro-

jection for the commercial/institutional buildings subsector. The overall mitigation potential increases to more than 43  $MtCO_2e$  in 2050. This is equivalent to 45% of reference emissions. This is fuelled by both the growth in buildings and the reference emissions and the increases in uptake of mitigation technologies or (Figure 36).

#### 14.6.1.2 Residential buildings

The identified mitigation potential in the residential building subsector is 14.5  $MtCO_2e$  in 2020 compared to the reference WEM emissions projection (equivalent to 20% of total projected emissions for the subsector). Figure 34 shows there are a number of mitigation options available for residential buildings in South Africa which have negative marginal abatement costs. The measure with the lowest marginal abatement cost is the installation of high efficiency lighting and energy efficient appliances in new and old buildings. The implement

tation of solar water heating, geyser blankets and improved insulation in new buildings also offer large potential savings at negative marginal abatement costs. Constructing passive buildings with improved thermal design has the highest marginal abatement cost (as this includes the total cost of the new building). The overall mitigation potential in 2030 (Figure 35) increases to over 23 MtCO<sub>2</sub>e/year compared to the reference WEM emissions projection (equivalent to 29% of total projected emissions from residential buildings).

The rank order of mitigation measures in the residential buildings sector (order from lowest to highest marginal abatement cost) remains largely the same across all three snapshots. With the continued uptake of mitigation technologies, the overall mitigation potential increases in 2050 to over 42 MtCO<sub>2</sub>e/year or 46% of the reference emissions projection (Figure 36).

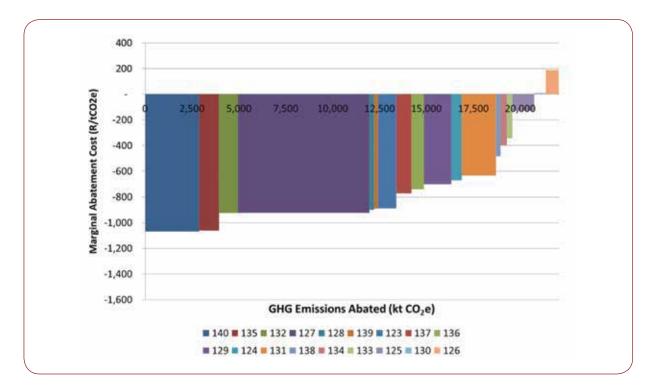



Figure 34: Marginal abatement cost curve for the buildings sector in 2020

400 200 Marginal Abatement Cost (R/tCO2e) . 10,000 15,000 25,000 35,000 5,000 20,000 30,000 -200 -400 -600 -800 -1,000 -1,200 -1,400 -1,600 GHG Emissions Abated (kt CO<sub>2</sub>e) ■ 140 ■ 135 ■ 132 ■ 127 ■ 128 ■ 123 ■ 139 ■ 137 ■ 129 ■ 136 ■ 124 ■ 131 ■ 138 ■ 134 ■ 133 ■ 125 ■ 130 ■ 126



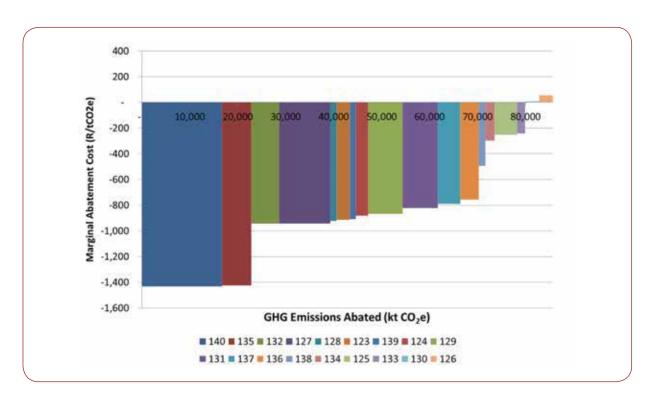



Figure 36: Marginal abatement cost curve for the buildings sector in 2050.

#### 14.7 Mitigation Potential from Other Sectors

The other sectors include an assessment for the pulp and paper production industry only. Marginal abatement cost curves have been developed for pulp and paper production in 2020, 2030 and 2050.

#### 14.7.1 Key Assumptions

For the objective of reducing emissions, the analysis assumes that a 45% switch from fossil fuels to zero-carbon residual wood waste and biomass fuels is technically possible by 2030 (i.e. by 2030, 55% of fuel is from fossil sources and 45% is waste/biomass). The MACCs also assume that 300 MW of combined heat and power (CHP) is installed by 2030 (with 85% fuel utilisation/ efficiency).

Sector growth is assumed to be 3.8% per annum on average from 2010 to 2050 in line with the emissions projection assumptions and the underlying macroeconomic model.

#### 14.7.2 Marginal Abatement Cost Curves

The technical mitigation potential for the pulp and paper subsector in 2020 is 2.4  $MtCO_2e$  or 32% compared to the reference WEM emissions projection for the subsector. There

are several mitigation options available, as shown in the 2020 MACC in Figure 37. The implementation of advanced energy management systems and energy efficient electric motors, improved controls and variable speed drives all have negative abatement costs. However, their overall abatement potential is low. The most significant abatement measures available to the pulp and paper industry is the conversion of fuel from coal to biomass/residual wood waste in conjunction with the implementation of combined heat and power (CHP) systems to replace imported grid power. Both options have positive abatement costs with CHP the most expensive at R1,400/tCO<sub>2</sub>e.

In 2030 (Figure 38), continued switching from coal to biomass and residual wood waste fuels and uptake of CHP increases mitigation potential to 5,618 ktCO<sub>2</sub>e or 54% compared to the reference WEM emission projection.

The mitigation potential in 2050 increases in absolute terms to over 12  $MtCO_2e$  influenced by the sector growth and increasing reference emissions (Figure 39). However, in percentage terms, the mitigation drops slightly to 54% compared to the reference WEM emission projection. The fuel switch option from coal to biomass remains the largest mitigation opportunity.

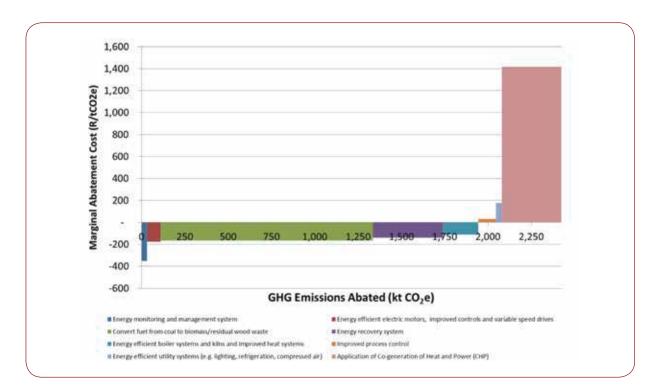



Figure 37: Marginal abatement cost curve for the pulp and paper sector in 2020

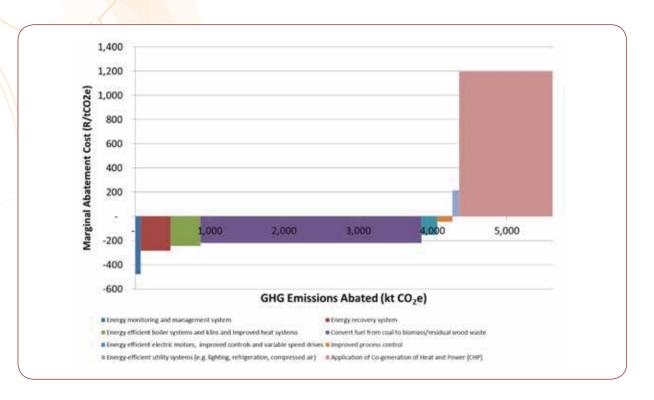



Figure 38: Marginal abatement cost curve for the pulp and paper sector in 2030

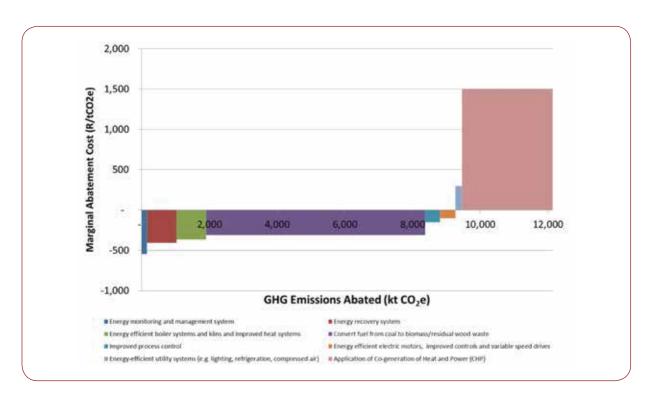



Figure 39: Marginal abatement cost curve for the pulp and paper sector in 2050

#### 14.8 Technical Mitigation Potential

A summary of technical mitigation potential in 2020, 2030 and 2050 for all sectors and subsectors covered in the assessment of the industry key sector is shown in Table 22 below.

In 2020, the metals sector accounts for just over one quarter of mitigation potential for the industry sector (12,249 ktCO<sub>2</sub>e, 27%). This rises to 86,502 ktCO<sub>2</sub>e (33%) in 2050. The proportion of total mitigation potential accounted for by the minerals sector rises from 3.5% in 2020 (1,553 ktCO<sub>2</sub>e) to

8.5% (22,072 ktCO<sub>2</sub>e) in 2050. By comparison, the buildings sector contribution to total mitigation potential drops from 49% (22,066 ktCO<sub>2</sub>e) in 2020 to 30% (85,668 ktCO<sub>2</sub>e) in 2050. The mining sector contribution to total mitigation potential is relatively stable, rising slightly from 12.5% (5,613 ktCO<sub>2</sub>e) in 2020 to 17.7% (45,847 ktCO<sub>2</sub>e) in 2050.

Mitigation potential expressed as a percentage of the reference WEM projection is shown for each sector and subsector in Table 23.

# Table 22: Summary of technical mitigation potential for the industry sector, including a breakdown by sector and subsector and showing results for 2020, 2030 and 2050 (ktCO<sub>2</sub>e)

| Sector         | Subsector                      | 2020   | 2030    | 2050    |
|----------------|--------------------------------|--------|---------|---------|
|                | Aluminium production           | 844    | 3,045   | 11,445  |
|                | Ferroalloys                    | 5,579  | 13,407  | 30,392  |
| Metals         | Iron and steel                 | 5,825  | 19,507  | 44,665  |
|                | Subtotal                       | 12,249 | 35,959  | 86,502  |
|                | % Total                        | 27.32% | 34.63%  | 33.47%  |
|                | Cement                         | 1,258  | 3,666   | 15,059  |
| Minerals       | Lime                           | 295    | 820     | 7,014   |
| Minerais       | Subtotal                       | 1,553  | 4,486   | 22,072  |
|                | % Total                        | 3.46%  | 4.32%   | 8.54%   |
| Chemicals      | Chemicals production           | 938    | 2,582   | 6,226   |
| Chemicals      | % Total                        | 2.09%  | 2.49%   | 2.41%   |
| Dula and Daaca | Pulp and paper                 | 2,423  | 5,618   | 2, 37   |
| Pulp and Paper | % Total                        | 5.40%  | 5.41%   | 4.70%   |
| Others Missing | Surface and underground mining | 5,613  | l 6,807 | 45,847  |
| Other Mining   | % Total                        | 12.52% | 16.18%  | 17.74%  |
|                | Residential                    | 14,551 | 23,375  | 42,303  |
|                | Commercial                     | 7,515  | 15,023  | 43,365  |
| Buildings      | Subtotal                       | 22,066 | 38,398  | 85,668  |
|                | % Total                        | 49.21% | 34.70%  | 30.30%  |
| Total          |                                | 44,842 | 103,850 | 258,453 |

Table 23: Percentage reduction in reference WEM emissions for the industry sector, assuming all technical mitigation potential is implemented

| Sector              | 2020 | 2030 | 2050 |
|---------------------|------|------|------|
| Metals              | 8%   | 18%  | 21%  |
| Minerals            | 1%   | 2%   | 5%   |
| Chemicals           | 1%   | 1%   | 2%   |
| Mining              | 4%   | 8%   | 11%  |
| Buildings           | 15%  | 19%  | 21%  |
| Other: Pulp & paper | 2%   | 3%   | 3%   |
| Total               | 30%  | 52%  | 63%  |

#### 14.9 WAM Projection

Assuming that all available mitigation measures are implemented (that is, that all technically feasible mitigation potential is implemented), the resulting WAM abatement projection is shown in Figure 40. Note that emissions from the power sector have been reallocated to end-use sectors and hence electricity-related emissions savings in industry end-use sectors have been adjusted for the progressive reduction of the carbon intensity of electricity supply over time. In the case of the industry sector, no early mitigation actions were identified and consequently there is no difference between the reference case WOM and WEM projections (please refer to Box I and Table 6). Consequently, only the WEM projection is shown in Figure 40.

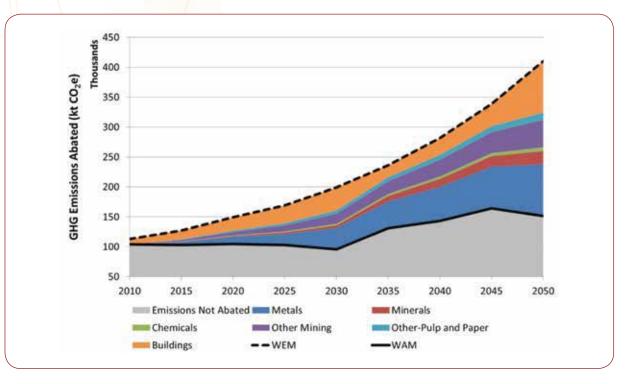



Figure 40: WAM scenario for the industry sector, showing a breakdown per sector. Emissions from the power sector have been reallocated to end-use sectors and electricity-related emissions savings have been adjusted accordingly. The reference case WEM emission projection is also shown

### 15. The Transport Sector

The assessment of mitigation potential in the transport sector covers road and rail transport as well as civil aviation. The corresponding IPCC emission categories are:

- IA3a civil aviation
- IA3b road transportation
- I A3c railways

For maritime transport, insufficient information was available on the emissions associated with inland navigation and coastal and short sea shipping was estimated to represent less than 1% of total freight transport (Aurecon, 2012). The sector was excluded as a consequence. Transportation of certain products (for example, primary fuels) can also be made using pipelines. In the GHGI, the emissions associated with energy used in pipeline transportation and fugitive releases are allocated to other sectors, and are not discussed in this sector. A range of potential mitigation measures were identified that could potentially be applied to the transport sector to deliver emissions reductions by 2050. These were discussed and agreed with the transport task team. The list of mitigation opportunities were categorised into the following types:

- modal shift
- demand reduction measures
- more efficient vehicle technologies
- more efficient operations
- alternative lower-carbon fuels

A final list of mitigation options was discussed and agreed with the transport sector task team. The measures are described in Table 24.

The approach to estimating mitigation potential and building MACCs for the transport sector has been summarised in Chapter III, Section 10.2.7 and is described in detail in Technical Appendix E:Transport Sector.

| Subsector      | Measure                                                                       | Туре                                   | Measures description                                                                                                                                                                                                                                                                                                  |
|----------------|-------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Road transport | Shifting passenger<br>transport from<br>passenger cars to<br>public transport | Modal shift                            | These measures would involve increased use of public<br>transport. The cost and effectiveness of these measures are<br>extremely site-specific, therefore more uncertain in a national<br>context. It was nevertheless considered important to capture<br>these measures, albeit on a more illustrative basis.        |
|                | Shifting freight<br>from road to rail                                         | Modal shift                            | This measure would involve increased use of rail to transport<br>freight. The cost and effectiveness of this measure is also<br>extremely site-specific, therefore more uncertain in a national<br>context. It was nevertheless considered important to capture<br>this measure, albeit on a more illustrative basis. |
|                | More fuel<br>efficient vehicles                                               | More efficient vehicle<br>technologies | Improving the fuel efficiency of gasoline/diesel vehicles through<br>engine efficiency improvements, hybridisation, lightweighting,<br>reducing rolling resistance, reducing aerodynamic drag.                                                                                                                        |
|                | Alternative fuel vehicles                                                     | Alternative lower-<br>carbon fuels     | Switching to vehicles powered by electricity, gas (e.g. compressed natural gas (CNG)) or hydrogen fuel cells.                                                                                                                                                                                                         |
|                | Biofuels                                                                      | Alternative<br>lower-carbon fuels      | Blending biofuels into road transport fuels to reduce carbon intensity.                                                                                                                                                                                                                                               |
|                | More energy<br>efficient trains                                               | More efficient vehicle technologies    | Technology applications have the potential to improve the energy efficiency of new trains.                                                                                                                                                                                                                            |
| Rail transport | Alternative fuel vehicles                                                     | Alternative lower-<br>carbon fuels     | This measure involves the application of alternative engine technologies and/or fuels including natural gas and biofuels.                                                                                                                                                                                             |
|                | Voltage upgrade                                                               | More efficient vehicle<br>technologies | This measure would involve switching from 3000V AC to 25kV DC on the Metrorail system to reduce efficiency losses on the system.                                                                                                                                                                                      |
| Aviation       | Fleet<br>management                                                           | More efficient vehicle<br>technologies | Certain fleet management measures open to airlines have the potential to influence emissions including, for example, aircraft retirement.                                                                                                                                                                             |

#### Table 24: List of mitigation opportunities identified in the transport sector

## mitigation REPORT

#### 15.1 Key Assumptions

Actions taken in the transport sector will have indirect impacts on emissions from other sectors. Specifically, measures that reduce the demand for fuels will reduce the level of fuel production capacity required in future scenarios, and the emissions associated with liquid fuel production. It has not been possible to explore this interaction fully. However, as an illustration, if the abatement measures relating to more efficient and alternative fuelled vehicles were implemented in the WAM scenario, this may be sufficient to delay a requirement for new investment in refinery capacity, which would be expected in the reference case WEM scenario. This in turn would reduce the overall emissions associated with liquid fuel production.<sup>16</sup>

#### 15.1.1 Road Sector

In the road sector, the marginal cost calculations rely on fuel prices and three other key metrics: capital costs of new cars, their fuel efficiency and maintenance costs. The capital costs and fuel efficiency used in the modelling are shown in Technical Appendix E:Transport Sector: Maintenance costs are typically between 0.5% and 2% of the capital costs. In the reference case WOM projection, conventional petrol and diesel engine vehicles are the default option (the counterfactual) for new vehicles.

#### 15.1.2 Rail Sector

The rail sector mitigation options are based on differing uptake of improved efficiency train fleets, fleet replacement and the use of alternative fuels. The main driver of the marginal abatement cost (MAC) analysis here is therefore the cost associated with each measure.

#### 15.1.3 Aviation

Two separate measures have been quantified for the aviation sector. In both cases the key technical data, including cost assumptions, has drawn upon international benchmarks. Since the market for aircraft is global the measures data is assumed to be applicable to the South African context. In practice, the capital cost estimates are very sensitive to the specific aircraft concerned, and the operating costs are sensitive to the assumed efficiency of the measures, the use of the aircraft (for example, routes deployed) and the assumed fuel prices. Insufficient data on the South Africa fleet was available to assess these variables separately, and the cost estimates are based on generic assumptions published in the literature. Further detail is provided in Technical Appendix E. The estimates of abatement and marginal abatement costs for all measures in the transport sector are presented in Table 32 for each of the three snapshots in time considered in this study: 2020, 2030 and 2050.

#### 15.2 Road Transport

#### 15.2.1 Marginal Abatement Cost Curves

As shown in Figure 41 to Figure 43, a number of measures have a negative marginal abatement cost. In particular, the uptake of compressed natural gas (CNG) vehicles which show a negative marginal abatement cost in all years is an attractive measure. It should be noted that the large scale uptake of CNG vehicles requires the necessary supporting infrastructure, along with the necessary supplies of gas.

Other measures have a high marginal abatement cost in earlier years, but the marginal abatement cost reduces in future years. This is the case with plug-in and full electric vehicles as well as passenger modal shift (shifting passengers from cars to public transport). The marginal abatement cost of hybrid electric vehicles also improves over time, although not to the extent where the marginal abatement cost becomes negative.

#### 15.2.2 Modal Shifts

The modal shift scenarios were the most complex to analyse. The marginal abatement costs of modal shift programmes are highly site dependant, making it difficult to derive an estimate applicable to the national level. A particular uncertainty relates to the level of capital investment, which unlike some of the other abatement measures will vary considerably from one case to another.

The analysis of passenger model shift has been based upon a single case study for the Western Cape Province (PDG, 2013) scaled up to a national estimate. The result should therefore be interpreted with care. In the short term (to 2020) the marginal abatement cost associated with the measure is positive, but this decreases towards 2050. This is largely due to increasing demand over time as well as an increase in fuel prices. This conclusion is broadly similar to results from other research. The IPCC, for example, suggests that a GHG reduction potential of 25% through passenger modal shift can be achieved with a marginal abatement cost of US\$30/tCO<sub>2</sub>e.<sup>17</sup>

For freight modal shift, the analysis is based on data provided by Transnet. This has the advantage of being based upon

16. These adjustments implicitly assume that the abatement measures identified for the transport sector will be fully implemented. In practice, the level of implementation may be lower than this, or other factors may influence growth in fuel demand from transport, which will in-turn influence the level of liquid fuel demand and the emissions from the other energy industries and petroleum refining sectors.

17. Table 5.6 (http://www.ipcc.ch/publications\_and\_data/ar4/wg3/en/ch5s5-3-1-5.html)

a national estimate of the potential, so is considered more robust that the estimate for passenger transport. The abatement potential has been estimated by overlaying the data from Transnet on the model shift potential in the rail sector, with the demand data from the ERC (Merven et al., 2012). Infrastructure (capital) cost data is sourced from a Transnet annual report (Transnet, 2012) and from this a cost of R1 bn per 1 bn tonne km shifted was assumed. Results of the analysis can be seen in Table 25.

#### Table 25: Modal shift mitigation potential, showing abatement (ktCO,e) and marginal abatement cost (MAC) estimates (R/tCO,e)

|                                                             | 20                  | 20                   | 20                  | 30                   | 2050                |                      |
|-------------------------------------------------------------|---------------------|----------------------|---------------------|----------------------|---------------------|----------------------|
|                                                             | ktCO <sub>2</sub> e | R/tCO <sub>2</sub> e | ktCO <sub>2</sub> e | R/tCO <sub>2</sub> e | ktCO <sub>2</sub> e | R/tCO <sub>2</sub> e |
| Road - shifting passengers from<br>cars to public transport | 820                 | 3,105                | 3,087               | 729                  | 9,396               | -1,128               |
| Road - shifting freight from road to rail                   | 1,840               | 1,375                | 2,729               | 2,085                | 2,997               | 1,497                |

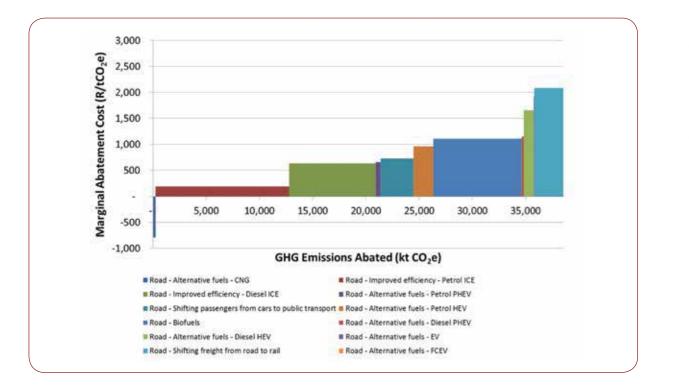



Figure 41: Marginal abatement cost curve for the road sector in 2020

# mitigation REPORT



Figure 42: Marginal abatement cost curve for the road sector in 2030

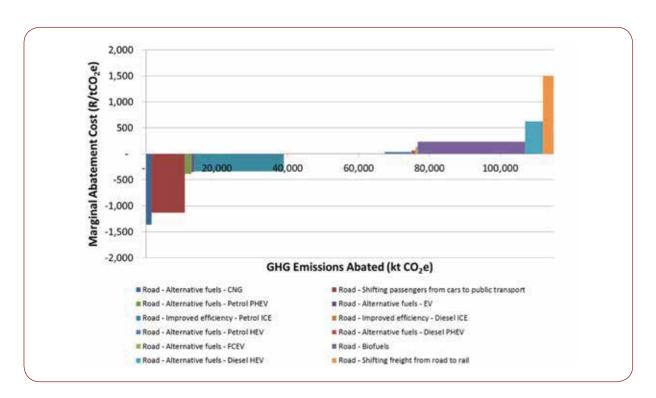
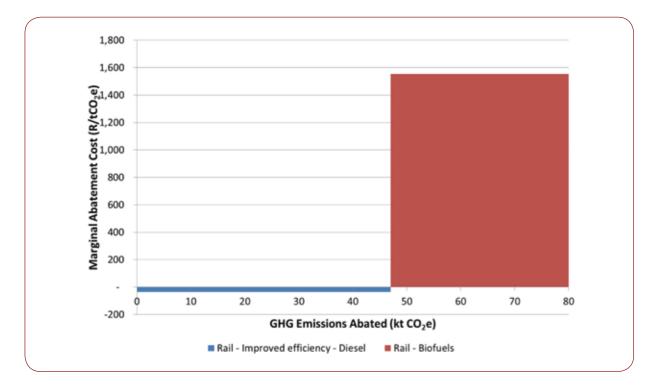



Figure 43: Marginal abatement cost curve for the road sector in 2050


#### 15.3 Rail Transport

#### 15.3.1 Marginal Abatement Cost Curves

Marginal abatement cost curves for the rail sector in 2020, 2030 and 2050 are shown in Figure 44, Figure 45 and Figure 46, respectively. The abatement and marginal abatement cost estimates are listed in Table 32.

In the rail sector, improved efficiency of diesel freight and diesel hybrid engines as well as switching to CNG appear as promising options, delivering savings in a cost-effective manner, first appearing on the MACCs in 2020, 2030 and 2050 respectively. Meanwhile improvements to passenger rail either through more efficient electric multiple unit (EMU) train sets, or a voltage upgrade to the network appear much more expensive. However, the cost estimates for these measures are much more uncertain.

With respect to biofuels, the costs and overall potential are both uncertain. First generation biofuels are currently more expensive than conventional fuels and this is likely to remain the case in the future. In contrast, second generation fuels are projected to offer a cost advantage over fossil fuels by 2030. In addition, biofuels provide a large potential for emissions savings despite not having a negative marginal abatement cost in any sector across the time series.





72

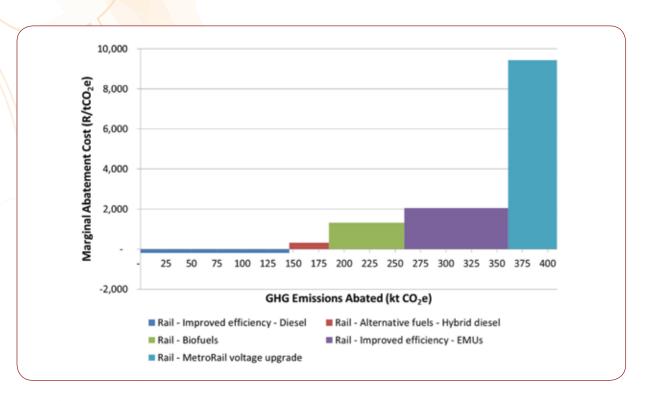



Figure 45: Marginal abatement cost curve for the rail sector in 2030

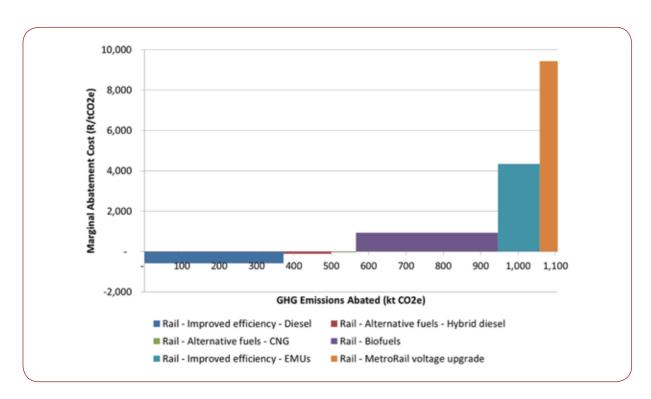



Figure 46: Marginal abatement cost curve for the rail sector in 2050

#### 15.4 Aviation

Given the limited number of abatement options remaining after the existing voluntary sectoral agreement to reduce emissions from the aviation sector has been accounted for, and the dominance (in terms of abatement potential) of the biofuels options in the aviation sector, the MACCs below do not serve an optimal purpose. Technical mitigation potential and the marginal cost of abatement for the aviation sector are identified in Table 32.



Figure 47: Marginal abatement cost curve for the aviation sector in 2020



Marginal Abatement Cost (R/tCO2e) GHG Emissions Abated (kt CO2e) Aviation - Biofuels

Figure 48: Marginal abatement cost curve for the aviation sector in 2030

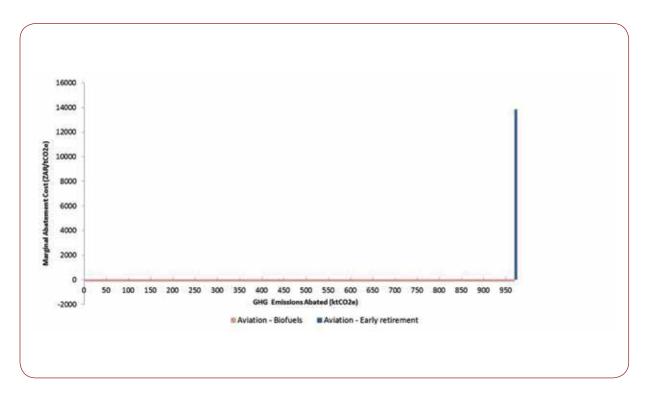



Figure 49: Marginal abatement cost curve for the aviation sector in 2050

#### 15.5 Technical Mitigation Potential

The analysis shows that if all technically available mitigation potential in the transport sector were to be implemented the GHG emissions could be reduced by 11,869 ktCO<sub>2</sub>e in 2020, 39,525 ktCO<sub>2</sub>e by 2030 and 117,151 ktCO<sub>2</sub>e by 2050 (Table 26).

| Subsector                     | Measure                                                                  | 2020   | 2030   | 2050    |
|-------------------------------|--------------------------------------------------------------------------|--------|--------|---------|
|                               | Aviation – improved efficiency – retrofit                                | I      | -      | -       |
| Aviation                      | Aviation – early retirement                                              | -      | -      | 6       |
|                               | Aviation – biofuels                                                      | 212    | 571    | 969     |
| Subsector Tota                |                                                                          | 213    | 571    | 975     |
|                               | Rail – improved efficiency – electric multiple unit (EMU) train sets     | N/A    | 102    | 112     |
|                               | Rail – improved efficiency – diesel                                      | 47     | 147    | 372     |
| Rail                          | Rail – alternative fuels – hybrid diesel                                 | N/A    | 39     | 128     |
|                               | Rail - Metrorail voltage upgrade                                         | N/A    | 48     | 48      |
|                               | Rail – alternative fuels – compressed natural gas (CNG)                  | N/A    | N/A    | 66      |
|                               | Rail – biofuels                                                          | 33     | 74     | 380     |
| Subsector Tota                | al                                                                       | 80     | 410    | 1,107   |
|                               | Road – alternative fuels – CNG                                           | 20     | 246    | 579, ا  |
|                               | Road – alternative fuels – diesel plug-in hybrid electric vehicle (PHEV) | 22     | 202    | 1,152   |
|                               | Road – improved efficiency – petrol internal combustion engine (ICE)     | 4,349  | 12,538 | 25,241  |
|                               | Road – alternative fuels – petrol hybrid electric vehicle (HEV)          | 450    | ١,872  | 7,522   |
|                               | Road – improved efficiency – diesel ICE                                  | 1,875  | 8,122  | 28,448  |
| Road                          | Road – alternative fuels – petrol PHEV                                   | 64     | 467    | 1,951   |
|                               | Road – alternative fuels – fuel cell electric vehicle (FCEV)             | -      | 4      | 616     |
|                               | Road – alternative fuels – diesel HEV                                    | 176    | 933    | 5,041   |
|                               | Road – alternative fuels – EV                                            | -      | 57     | 750     |
|                               | Road – shifting passengers from cars to public transport                 | 820    | 3,087  | 9,396   |
|                               | Road – shifting freight from road to rail                                | 1,840  | 2,729  | 2,997   |
|                               | Road – biofuels                                                          | 1,959  | 8,286  | 30,374  |
| Subsector Tota                | al                                                                       | ١١,575 | 38,545 | 115,068 |
| TOTAL                         |                                                                          | ,869   | 39,525 | 7, 5    |
| TOTAL % Red<br>(relative to W | uction<br>EM with indirect emissions included)                           | 12%    | 30%    | 54%     |

Table 26: Total mitigation potential for the transport sector, assuming all measures are implemented (in ktCO<sub>2</sub>e)

Mitigation potential expressed relative to the reference WEM projection is shown for each sector and subsector in Table 27.

# mitigation REPORT



Table 27: Percentage reduction in reference WEM emissions for the transport sector, assuming all technical mitigation potential is implemented (%)

| Sector   | tor 2020 2030 |    | 2050 |    |
|----------|---------------|----|------|----|
| Road     |               | 13 | 32   | 59 |
| Rail     |               | 2  | 6    |    |
| Aviation |               | 4  | 8    |    |
| Total    |               | 12 | 30   | 54 |
|          |               |    |      |    |

#### 15.6 WAM Projection

Assuming that all available mitigation measures are implemented, the resulting WAM abatement projection is shown in Figure 50. Note that emissions from the power sector have been reallocated to end-use sectors and hence electricity-related emissions savings in industry end-use sectors have been adjusted for the progressive reduction of carbon intensity of the electricity supply over time.

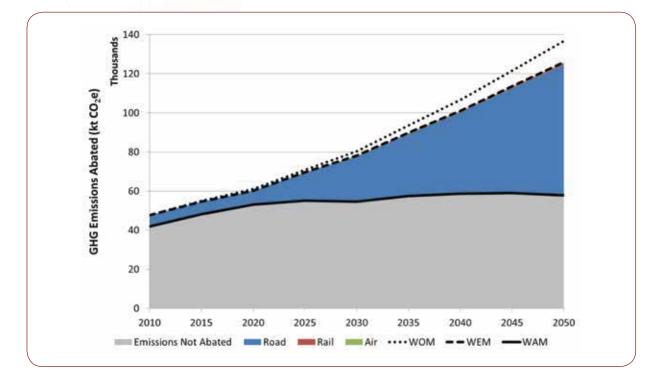



Figure 50: WAM scenario for the transport sector, showing a breakdown per sector. Emissions from the power sector have been reallocated to end-use sectors and electricity-related emissions savings have been adjusted accordingly. Reference case WOM and WEM emission projections are also shown

As described in the introductory section, action taken in the transport sector will have indirect impacts on emissions from other sectors. Specifically, measures that reduce the demand for fuels will reduce the level of fuel production capacity required in future scenarios, and the emissions associated with liquid fuel production. It has not been possible to explore this interaction fully. However, as an illustration, if the abatement measures relating to more efficient and alternative fuelled vehicles where implemented in the WAM scenario, this may be sufficient to delay a requirement for new investment in refinery capacity, which would be expected in a WEM scenario. This in turn would reduce the overall emissions associated with liquid fuel production.

### 16. The Waste Sector

This section provides an overview of mitigation opportunities for the waste sector. The assessment of mitigation opportunities focused on the municipal waste sector (due to a lack of data on industrial waste disposal) and considered emissions from the following IPCC emission sources:

- 4A1 managed waste disposal sites
- 4D wastewater treatment and discharge

Mitigation opportunities from managed waste disposal sites arise from reductions of methane (CH<sub>4</sub>) emissions contained in landfill gas which is generated as a result of the anaerobic decomposition of organic waste deposited in the landfill. Wastewater treatment options result from emissions of both CH<sub>4</sub> and nitrous oxide (N<sub>2</sub>O) depending on the treatment method.

Options identified for managed waste disposal fall into two categories. Firstly, better management of landfill sites, with recovery and flaring or use of landfill gas and secondly, alternatives to conventional landfill for disposing of organic waste. While landfilling of waste is the primary means of managed waste disposal currently, there is interest in South Africa in exploring other waste management options. For example the government is currently drafting a strategy on composting. While the options being considered focus on municipal solid waste, there may be other opportunities for using waste as a fuel.

The final list of measures considered for the waste sector includes:

- managed waste disposal measures:
  - landfill gas collection to electricity
  - landfill gas collection and flaring
  - anaerobic digestion
  - energy from waste
  - windrow composting
  - home composting
- in vessel composting
- paper recycling

Wherever possible, the assessment of mitigation options and potential has been aligned to the National Waste Strategy (DEA, 2011c), which promotes waste minimisation, reuse, recycling and recovery of waste while ensuring the effective and efficient delivery of waste services. Despite this, a mitigation option for waste minimisation was not evaluated for the purposes of the MACC analysis due to a lack of information to evaluate how this might be achieved in practice, and data on the costs and reductions which might be achieved. Wastewater treatment options were not considered for the purposes of the MACC analysis due to a lack of data to assess mitigation potential and due to the small size of the emissions source in South Africa.

A more detailed overview of emission trends, existing policies and potential future abatement opportunities in the sector is provided in Technical Appendix F: Waste Sector.

#### 16.1 Marginal Abatement Cost Curves

The estimates of abatement and marginal abatement costs for all measures in the waste sector are presented in Table 32 for each of the three snapshots in time considered in this study: 2020, 2030 and 2050.

In 2020 (Figure 51), the landfill gas recovery and generation option is the lowest cost option (at less than  $R100/tCO_2e$ ). This option also has the greatest abatement potential (4.8 MtCO2e). Recovery and electricity generation has lower marginal abatement costs than recovery and flaring as the additional cost of generating equipment is more than offset by the value of the electricity produced, and the higher gas recovery rates assumed when recovery involves generation. Abatement for these options is higher than for other options as it is assumed these technologies can be implemented relatively quickly. Paper recycling, home composting and energy from waste have significantly higher marginal abatement costs than landfill gas recovery, (R360-370/tCO2e), and have less abatement potential. Centralised composting and anaerobic digestion have higher marginal abatement costs again, (R650–900/tCO<sub>2</sub>e) and only produce mitigation of 0.6 MtCO<sub>2</sub>e. The total mitigation potential identified is just below 10 MtCO<sub>2</sub>e.

By 2030 (Figure 52), the total mitigation potential has grown to 22.1 MtCO<sub>2</sub>e, mainly due to fuller implementation of the mitigation options, but also as waste quantities generated grow, leading to increased emissions to be abated. While the marginal abatement cost of the landfill gas options remains the same as in 2020, the marginal abatement costs of other options increases slightly, as more implementation of landfill gas recovery reduces the savings the other measures can deliver.

This trend is also seen in 2050 (Figure 53). Landfill gas recovery and generation can still deliver significant abatement of  $31 \text{ MtCO}_2\text{e}$  at low marginal abatement cost, as some residual waste is still assumed to be disposed of to landfill and all sites are assumed to have recovery of gas by 2050. The total reduction in emissions which can be achieved, if mitigation options with higher marginal abatement costs are also implemented, is 39.7 MtCO<sub>2</sub>e, or 78% of projected emissions in the sector.

## mitigation REPORT

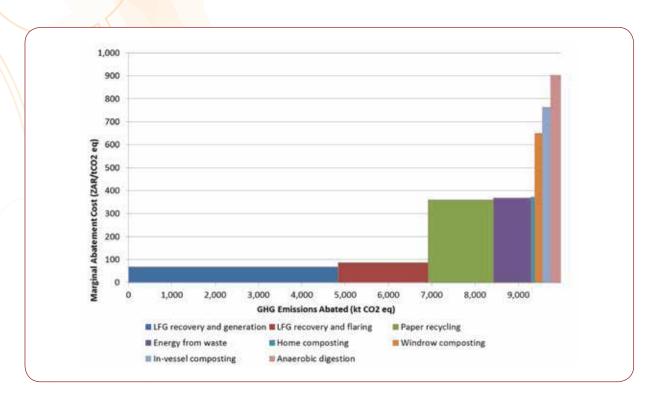



Figure 51: Marginal abatement cost curve for the waste sector in 2020

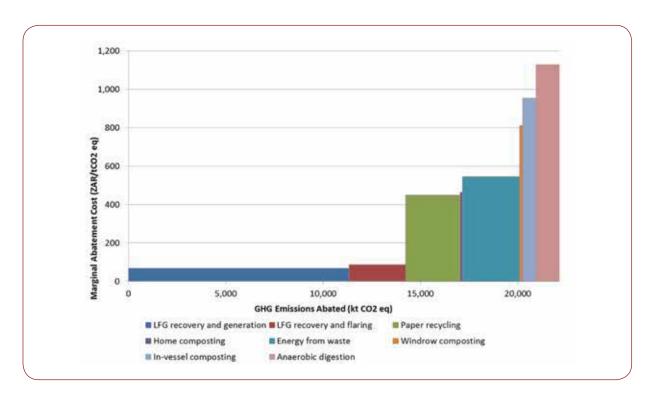



Figure 52: Marginal abatement cost curve for the waste sector in 2030

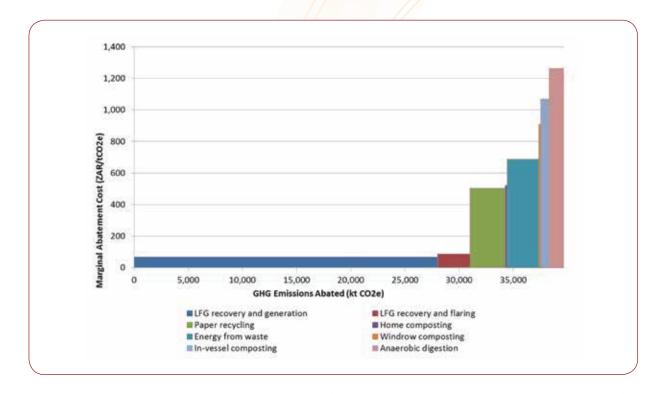



Figure 53: Marginal abatement cost curve for the waste sector in 2050

#### 16.2 Technical Mitigation Potential

If all technically available mitigation potential in the waste sector were to be implemented, then the current analysis shows that GHG emissions could be reduced by 9,977 ktCO<sub>2</sub>e in 2020, 22,122 ktCO<sub>2</sub>e by 2030 and 39,658 ktCO<sub>2</sub>e by 2050. This represents a total potential reduction of 41%, 66% and 78% (respectively) of reference emissions under the WEM projection (Table 28).

Table 28: Total mitigation potential for the waste sector, assuming all measures are implemented (in ktCO<sub>2</sub>e)

| Subsector                | Measure                             | 2020  | 2030   | 2050   |
|--------------------------|-------------------------------------|-------|--------|--------|
|                          | LFG recovery and generation         | 4,843 | 11,325 | 28,020 |
|                          | Paper recycling                     | I,506 | 2,802  | 3,223  |
|                          | LFG recovery and flaring            | 2,076 | 2,912  | 3,002  |
| Maria - D'araal          | Energy from waste                   | 869   | 2,935  | 2,913  |
| Managed Waste Disposal   | Anaerobic digestion                 | 234   | 1,198  | 1,354  |
|                          | In-vessel composting                | 83    | 112    | 197    |
|                          | Home-composting programme           | 189   | 682    | 771    |
|                          | Windrow composting                  | 176   | 155    | 176    |
| TOTAL                    |                                     | 9,977 | 22,122 | 39,658 |
| TOTAL % Reduction (relat | TOTAL % Reduction (relative to WEM) |       | 66%    | 78%    |

## 17. The Agriculture, Forestry and Other Land Use Sector

Options covering the following IPCC emission categories have been considered in the assessment of mitigation potential for the agriculture, forestry and other land use (AFO-LU) sector:

- 3A1 enteric fermentation
- 3A2 manure management
- 3B1 forestry land remaining forestry land and land converted to forest land
- 3B1b land converted to forest land
- 3BI-6b land converted into other land
- 3B2 cropland remaining cropland and land converted into cropland
- 3C4 direct N<sub>2</sub>O from managed soils
- 3C1 biomass burning

The final list of mitigation options presented for the AFOLU sector was agreed after correspondence and collaboration with the AFOLU task team and other experts and specialists in the field. The list of measures is as follows:

- treatment of livestock waste
- expanding plantations
- urban tree planting
- rural tree planting (thickets)
- restoration of mesic grasslands
- biochar addition to cropland

Please refer to Technical Appendix G: Agriculture, Forestry and Other Land Use for a more detailed discussion of reference case projections and the assessment of mitigation potential in the sector.

#### 17.1 Marginal Abatement Cost Curves

The estimates of abatement and marginal abatement costs for all measures in the AFOLU sector are presented in Table 32 for each of the three snapshots in time considered in this study: 2020, 2030 and 2050.

In 2020 (Figure 54), the expanding plantations measure is not only cost effective (cost savings estimated to be R91/tCO<sub>2</sub>e), but it also mitigates the most emissions (an estimated 2,400 ktCO<sub>2</sub>e). The restoration of mesic grasslands has the highest marginal abatement cost (R480/tCO<sub>2</sub>e), while the treatment of livestock waste mitigates the least emissions by 2020 (155 ktCO<sub>2</sub>e).

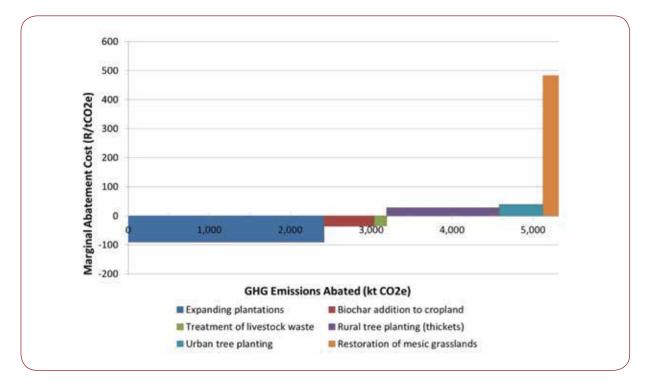
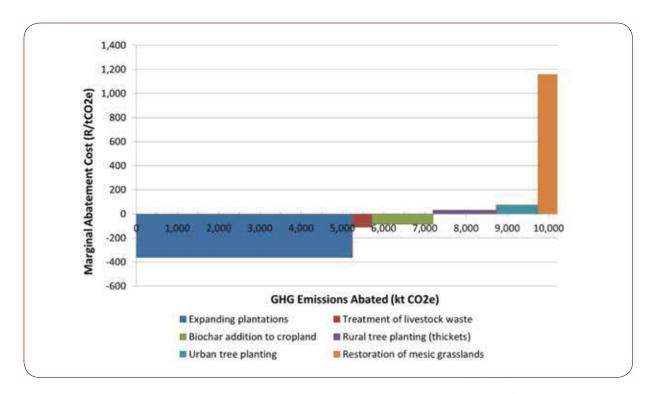




Figure 54: Marginal abatement cost curve for the AFOLU sector in 2020

In 2030 (Figure 55), expanding plantations, the treatment of livestock waste and biochar options are all cost-saving options and together mitigate an estimated 7,100 ktCO<sub>2</sub>e. Restoration of mesic grasslands remains the measure with the highest marginal abatement cost. However, while these may be considered relatively easy measures to implement, other

impacts need to be considered and are included as part of the multi-criteria analysis (MCA). This changes the relative priorities of these measures considerably, specifically commercial forestry which has high negative impacts under social and environmental criteria, for example.





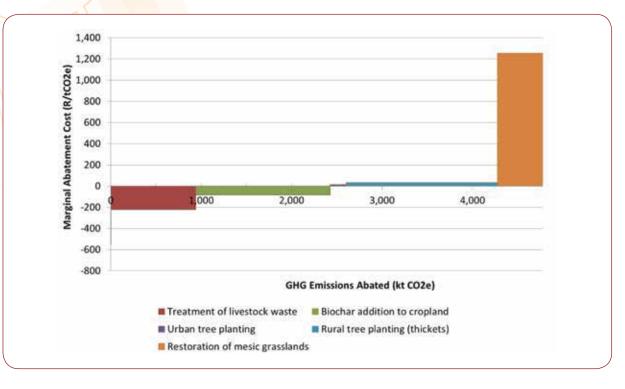



Figure 56: Marginal abatement cost curve for the AFOLU sector in 2050

In 2050 (Figure 56), the expansion of plantations is no longer a mitigation option since plantations can no longer be expanded and the maximum potential of the sector drops to 4,775 ktCO<sub>2</sub>e. Rural tree planting and biochar addition to cropland contribute the most, while the mitigation potential from urban tree planting falls to 181 ktCO<sub>2</sub>e. The treatment of livestock waste and biochar mitigation options both have negative marginal abatement costs in 2050.

#### 17.2 Technical Mitigation Potential

If all technically available mitigation potential in the AFOLU sector were to be implemented, then these results indicate that GHG emissions could be reduced by  $5,315 \text{ ktCO}_2\text{e}$  by 2020, 10,206 ktCO<sub>2</sub>e by 2030 and 4,775 ktCO<sub>2</sub>e by 2050. This represents a total potential reduction of 10%, 19% and 9% respectively of emissions relative to the reference WEM projection (Table 29).

#### Table 29: Technical mitigation potential for the AFOLU sector, assuming all measures are implemented (in ktCO<sub>2</sub>e)

| Measure                             | 2020  | 2030   | 2050  |
|-------------------------------------|-------|--------|-------|
| Urban tree planting                 | 539   | 1,016  | 1,671 |
| Treatment of livestock waste        | 155   | I,485  | I,485 |
| Biochar addition to cropland        | 619   | 473    | 939   |
| Restoration of mesic grasslands     | 192   | 461    | 499   |
| Rural tree planting (thickets)      | 1,392 | 1,532  | 181   |
| Expanding plantations               | 2,418 | 5,240  | 0     |
| TOTAL                               | 5,315 | 10,206 | 4,775 |
| TOTAL % Reduction (relative to WEM) | 10.0% | 19.4%  | 9.2%  |

# Chapter V: National Mitigation Potential

This chapter presents a national summary of mitigation potential. The chapter includes a national marginal abatement cost curve and a national summary of technical mitigation. The assessment of national mitigation potential continues with a description of national abatement pathways and a discussion of the wider macroeconomic impacts of implementing a range of measures under these pathways.

## 18. Summary of National Mitigation Potential

#### 18.1 Marginal Abatement Cost Curve

National-scale MACCs are presented for each of the three snapshots considered (2020, 2030, 2050) in Figure 57 to Figure 59.<sup>18</sup> Detailed inputs to the MACCs for each measure are provided in Table 32. The individual measures which comprise the national MACCs are not identified in the figures below as this section focuses on a national summary of results. To this end, abatement estimates and marginal abatement costs are summarised for each of the three snapshots in Table 30. Results are presented per quartile of the total national mitigation estimate.

As illustrated in Figure 57 and summarised in Table 30, the total amount of abatement estimated in 2020 is 105,059 ktCO<sub>2</sub>e, at an average marginal abatement cost of R59/ tCO<sub>2</sub>e. This represents a reduction of 15.8% relative to the reference WEM projection for future GHG emissions. The MACC illustrates that 37.8% of the total mitigation estimate for 2020 (39,716 ktCO<sub>2</sub>e) can be achieved through implementing mitigation measures with a negative marginal abatement cost.

In 2030, the national estimate for mitigation potential rises to 348,220 ktCO<sub>2</sub>e. This is a 40.6% reduction of emissions, assuming all identified mitigation measures are implemented relative to the reference WEM projection. A smaller proportion (25% or 87,945 ktCO<sub>2</sub>e) of mitigation potential can be achieved through implementing mitigation measures with a negative marginal abatement cost.

In 2050, the estimate of national mitigation potential rises further to 887,169 ktCO<sub>2</sub>e, or 55.7% of the reference WEM projection. Only 25,5% (226,661 ktCO<sub>2</sub>e) of mitigation potential can be achieved through implementing mitigation measures with a negative marginal abatement cost.

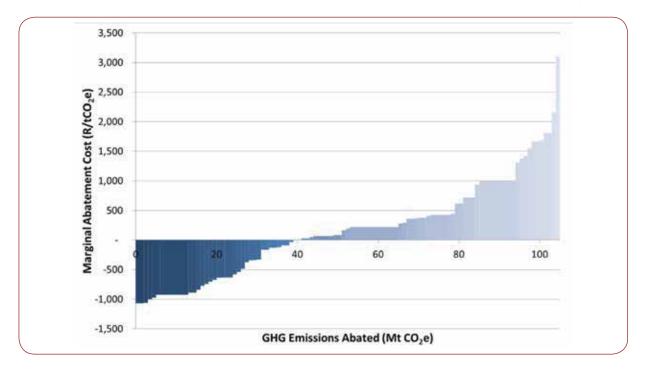



Figure 57: National marginal abatement cost curve for 2020

18. Note the MACCs presented here are not adjusted for direct and indirect saving in the transport sector.

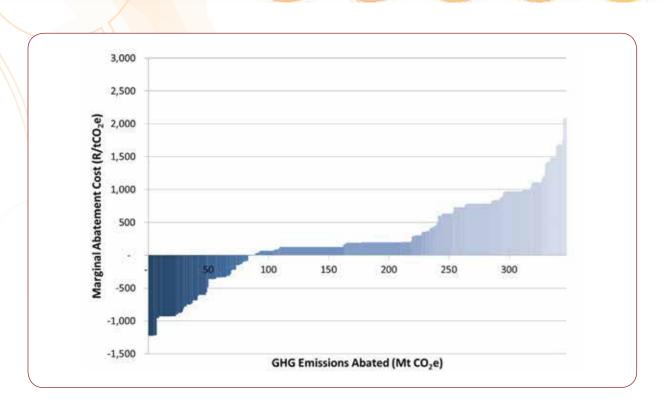
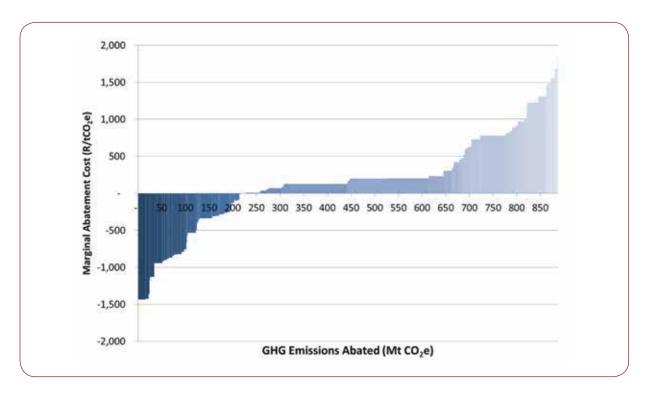




Figure 58: National marginal abatement cost curve for 2030





|                                |                    | 2020                  |                       | 2030               |                       |                       | 2050               |                       |                       |
|--------------------------------|--------------------|-----------------------|-----------------------|--------------------|-----------------------|-----------------------|--------------------|-----------------------|-----------------------|
|                                | Total<br>abatement | MAC<br>lower<br>bound | MAC<br>upper<br>bound | Total<br>abatement | MAC<br>lower<br>bound | MAC<br>upper<br>bound | Total<br>abatement | MAC<br>lower<br>bound | MAC<br>upper<br>bound |
| First Quartile                 | 27,306             | -1,068                | -402                  | 60,137             | -1,226                | -337                  | 124,954            | -1,432                | -408                  |
| Second Quartile                | ,4 7               | -402                  | -83                   | 29,501             | -337                  | 29                    | 33, 24             | -406                  | 8                     |
| Third Quartile                 | 29,056             | -72                   | 346                   | 48,   40           | 30                    | 420                   | 409,519            | 13                    | 401                   |
| Fourth Quartile                | 37,281             | 359                   | 3,105                 | 110,442            | 434                   | 2,445                 | 219,571            | 420                   | 4,340                 |
| Overall                        | 105,059            |                       |                       | 348,220            |                       |                       | 887,169            |                       |                       |
| Reduction com-<br>pared to WEM | 15.84%             |                       |                       | 40.59%             |                       |                       | 55.69%             |                       |                       |

Table 30: Total national abatement, assuming full implementation of all measures under the WAM projection. Results show abatement (ktCO<sub>2</sub>e) as well as upper and lower bounds for marginal abatement cost (MAC), (R/tCO<sub>2</sub>e) per quartile of total abatement, for 2020, 2030 and 2050.

#### 18.2 Technical Mitigation Potential

The national estimate of technical mitigation potential has already been discussed. In this section, a detailed breakdown per key sector is presented. Results are shown graphically in Figure 60 and in tabular form in Table 31. Also shown in this sector (for completeness) are the remaining emissions (i.e. emissions not abated) under the WAM projection (Figure 61).

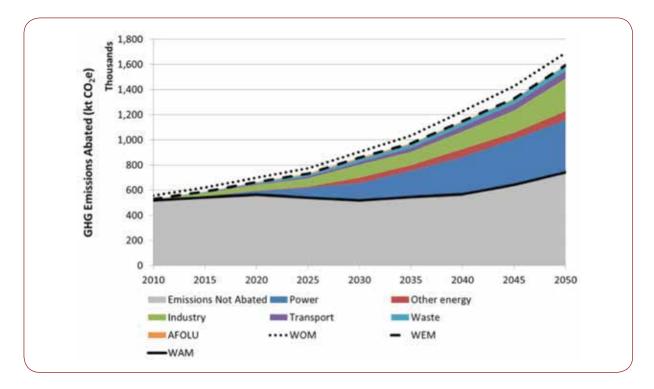



Figure 60: National abatement potential assuming all measures are implemented under the WAM projection. Results are shown for each of the key sectors, and reference projections for the reference case WOM and WEM projections are also shown. The total for all remaining emissions is indicated using grey shading.

When considering the total mitigation which might be achieved across all sectors, it is important to account for the interaction between sectors. For example, implementation of mitigation measures in the power sector will reduce the carbon intensity of electricity supplied, hence reducing the savings achieved by demand side electricity saving measures. Similarly, mitigation measures in the transport sector will reduce demand for liquid fuels, reducing the amount of new capacity and hence emissions in the refining and other energy industries sector. These adjustments are discussed further below. The national estimates of mitigation potential shown in this section allow for these interactions.

The analysis of mitigation potential has included estimates for emission savings related to energy efficiency and reduced electricity consumption. The study has also explicitly considered options for reducing emissions in the power sector by reducing the carbon content of South Africa's electricity supply through a combination of measures, including a switch to renewables and further implementation of nuclear power. As the dependence on coal-based fossil fuels in the electricity supply diminishes over time, the carbon intensity of electricity reduces over time. This effect impacts on estimated savings related to the reduced consumption of electricity in end-use sectors of the economy. To accommodate this, emissions from the power sector have been reallocated to end-use sectors and electricity-related emissions savings have been adjusted for the progressive reduction of carbon intensity of the electricity supply over time.

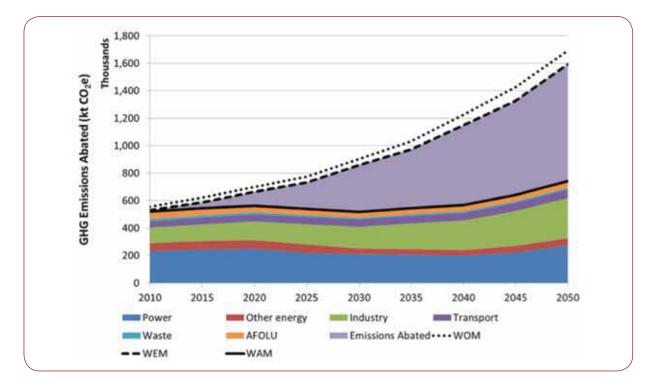



Figure 61: Remaining emissions under the WAM projection. Results are shown for each of the key sectors, and reference projections for the reference case WOM and WEM projections are also shown. Also indicated is the national estimate of mitigation potential (purple shading).

In calculating total technical mitigation potential for the energy sector, abatement estimates for the other energy industries and petroleum refining sectors have been adjusted to account for reductions in the demand for liquid fuels as a result of the implementation of abatement measures identified in the transport sector. In effect, reductions in direct emissions (that is, from fuel combustion) are allocated to the transport sector, and the indirect effects on fuel production are reflected in the other energy industries and petroleum refining sectors. Therefore, emissions (and hence abatement estimates) are adjusted in the other energy industries and petroleum refining sectors to reflect the reduced demand for liquid fuels associated with the implementation of abatement in the transport sector.<sup>19</sup> The largest contributor to abatement in 2050 is the power sector, (at 416,555 ktCO<sub>2</sub>e). This is a 26% reduction of emissions relative to the reference WEM projection. This estimate ramps up significantly after 2030, once a new nuclear power plant is commissioned. Overall, the energy sector accounts for technical mitigation potential of 5% (33,057 ktCO<sub>2</sub>e), 21% (181,304 ktCO<sub>2</sub>e) and 31% (487,557 ktCO<sub>2</sub>e) compared to the reference case WEM projections in 2020, 2030 and 2050, respectively.

The second most significant contributor to national mitigation potential is the industry sector, accounting for 258,453 ktCO<sub>2</sub>e in 2050 (a 16.2% reduction relative to WEM). Technical mitigation from the remaining three sectors (transport, waste, AFOLU) reaches 106,534 ktCO<sub>2</sub>e in 2050 (a 6.7% reduction of reference WEM emissions).

|                                    | 20                                   | 20    | 20                                   | 30    | 20.                                  | 50    |
|------------------------------------|--------------------------------------|-------|--------------------------------------|-------|--------------------------------------|-------|
| Sector/Projection                  | Abatement/<br>reference<br>emissions | % WEM | Abatement/<br>reference<br>emissions | % WEM | Abatement/<br>reference<br>emissions | % WEM |
| WOM (reference)                    | 699,307                              |       | 903,700                              |       | 1,692,471                            |       |
| WEM (reference)                    | 663,270                              |       | 857,745                              |       | I,592,605                            |       |
| Power                              | 28,585                               | 4.31  | 37, 49                               | 15.99 | 416,555                              | 26.16 |
| Other energy                       | 4,472                                | 0.67  | 44,154                               | 5.15  | 71,002                               | 4.46  |
| Industry                           | 44,842                               | 6.76  | 103,850                              | 2.    | 258,453                              | 16.23 |
| Transport                          | 6,952                                | 1.05  | 22,530                               | 2.63  | 62,101                               | 3.90  |
| Waste                              | 9,977                                | 1.50  | 22,122                               | 2.58  | 39,658                               | 2.49  |
| AFOLU                              | 5,315                                | 0.80  | 10,206                               | 1.19  | 4,775                                | 0.30  |
| Emissions Abated (relative to WEM) | 100,143                              | 15.10 | 340,012                              | 39.64 | 852,544                              | 53.53 |
| Remaining Emissions (WAM)          | 563,127                              |       | 517,733                              |       | 740,061                              |       |

Table 31: Total technical mitigation potential for the WAM projection (in ktCO<sub>2</sub>e). Results are shown per key sector, and also as a percentage reduction of the reference case WEM projection. Total remaining emissions under the WAM projection are also shown.

19. This adjustment implicitly assumes that the abatement measures identified for the transport sector will be fully implemented. In practice, the level of implementation may be lower than this, or other factors may influence growth in fuel demand from transport, which will in turn influence the level of liquid fuel demand and the emissions from the other energy industries and petroleum refining sectors.

The national estimates of mitigation potential for 2020, 2030 and 2050 represent a reduction of 15.1%, 39.6% and 53.5%, respectively, relative to the WEM projection. If the same estimates of technical mitigation potential are expressed relative to the WOM reference case projection, they are 14.3%, 37.6% and 50.4%.

Under the Copenhagen Accord, South Africa is committed to reduce its GHG emissions by 34% and 42% below a business as usual (BAU) emissions growth trajectory (by 2020 and 2025, respectively). The WOM reference case is possibly best suited to the description of a BAU emissions growth tra-

jectory. On this basis, the assessment of technical mitigation potential indicates a significant contribution to South Africa's international emission reduction commitments. For reference, estimated emission reductions for 2025 from the current study are 30% of the reference WOM projection and 26% of the reference WEM projection.

The remaining GHG emissions under the WAM projection (563 MtCO<sub>2</sub>e, 517 Mt CO<sub>2</sub>e and 740 MtCO<sub>2</sub>e) fall within the peak, plateau and decline (PPD) emissions trajectory during the 2010–2040 period. The result is illustrated graphically in Figure 62 and discussed further in the next section.

### 19. National Abatement Pathways

Having defined national mitigation potential in the previous section, focus now shifts from assessing individual measures to assessing pathways which are essentially groupings of mitigation measures. It is the intention in the remaining section of the report to demonstrate how these pathways can be constructed and what the broader macroeconomic impact of those choices would be, if implemented.

#### 19.1 Level of Implementation of Mitigation Potential

A straightforward way to illustrate a range of different mitigation outcomes for South Africa is simply to implement varying amounts of the total mitigation potential identified in this study. This is shown in Figure 62 which plots four different WAM pathways. The pathways assume varying proportions of implementation of the total mitigation potential over time - 100%, 75%, 50% and 25%. Also plotted on the same figure are the reference case emission projections developed in this study (WOM and WEM) as well as the growth without constraint (GWC) curve and the PPD emission reduction trajectory range (developed under the LTMS study and under the NCCRP, respectively). The comparison indicates firstly that emission reductions achieved by 2050 (with respect to the WEM reference case) are 213,426 and 639 Mt CO<sub>2</sub>e for the 25%, 50% and 75% levels of implementation of mitigation potential, respectively.

The WAM pathway, which assumes all mitigation potential is implemented, achieves emission reductions which fall within the PPD range, between 2010 and 2040. The 75% imple-

mentation pathway follows the upper limit of the PPD range between 2010 and 2030. Maintaining emissions reductions which fall within the PPD range after 2040 will require more mitigation potential to be identified and implemented in future than has been estimated in this study.

Lastly, absolute levels of emissions in South Africa do not reduce over the long term. Assuming all identified mitigation potential is implemented, emissions decrease in absolute terms in both 2020 and 2030. But in 2050, and for all other levels of implementation of abatement potential, no absolute emission reductions relative to 2010 are achieved. This result is driven largely by the assumptions driving the decarbonisation of South Africa's electricity supply (given this sector's dominance of both projected emissions and estimated mitigation potential). These assumptions tie reduced dependence on coal-based power and diversification towards other energy sources (such as renewables, biofuels and nuclear power) to modelling conducted under the Integrated Resource Plan (IRP) (DoE, 2011). By definition, the IRP planning horizon was limited to 2030. Beyond this horizon, the share of coal and non-coal-based power in South Africa is effectively held constant – with growth in supply driven by demand from end-use sectors.

This effectively limits the level of diversification of South Africa's power supply which will have to be reconsidered in future. A more aggressive decarbonisation of South Africa's electricity supply will have to be targeted as part of the process of updating the IRP if an absolute reduction in emissions relative to current levels, or a more ambitious emissions reduction target (such as PPD) is to be achieved.



Figure 62: National abatement pathways based on the WAM projection. Pathways indicated assume different levels of implementation of the national mitigation potential (100%, 75%, 50%, 25%). Also shown are the reference case WOM and WEM projections as well as the GWC and PPD scenarios developed under the LTMS study (ERC, 2007) and the NCCRP (DEA, 2011a), respectively

Figure 63 shows how the sector breakdown in mitigation potential changes with different levels of implementation of mitigation potential. This occurs because of the distribution of measures in each sector across the full spectrum of measures under the balanced weighting pathway (assuming all mitigation potential is implemented). For example, it is evident from the graph that energy measures are not well represented in the top 50th percentile of total mitigation. In contrast, transport has a strong representation in the top 50th percentile. This pattern of mitigation by sector is important when applying the economic analysis and implies that the only way to compare impact across pathways and level of implementation of mitigation potential is to normalise the impacts (GDP and employment) by dividing by the amount of mitigation potential for the sector.

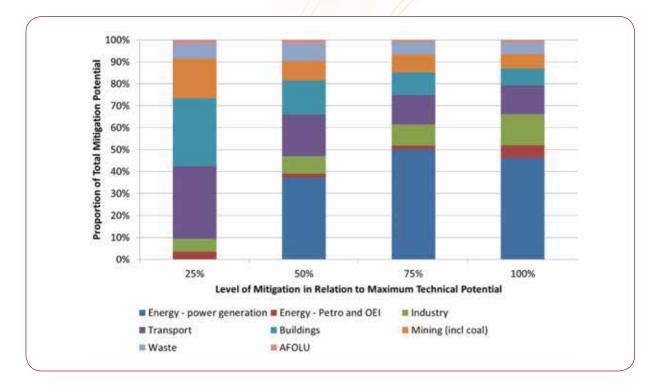



Figure 63: Split in technical mitigation potential between sectors as the level of identified mitigation potential is increased (note: cut-offs are not at exact 25 percentiles)

#### 19.2 Marginal Net Benefit

Three mitigation pathways have already been determined, based on different weightings of the main criteria in the MCA framework (approved by the TWG-M). By definition, the MCA framework is developed to allow decision-making regarding the ranking of measures which considers more than merely abatement potential and marginal abatement cost. The selected pathways are as follows.

- A balanced weighting pathway, which allows for relatively equal consideration of all key factors in the MCA model.
- A pathway which emphasises the cost and implementability of mitigation measures, effectively assigning a larger weight to those measures which have lower marginal abatement costs and are easier to implement.
- A pathway which emphasises social and environmental factors, effectively prioritising measures with lower impacts in these areas

The concept of marginal net benefit and the use of marginal abatement net benefit curves (MANBCs) allow a ranked list of mitigation options to be established which, as they are applied incrementally, create increasing levels of mitigation with decreasing net benefit, taking all criteria into consideration. The curves for each of the three abatement pathways are shown in Figure 64 to Figure 66.<sup>20</sup> Using these curves, it is possible to read from the horizontal axis how much total mitigation can be achieved (with 25%, 50%, 75% and 100% of total mitigation potential used for illustration purposes) over the 40-year lifetime of the current assessment. Scores for each measure are expressed in percentiles.

Figure 64, Figure 65 and Figure 66 effectively illustrate the marginal net benefit (for the same level of abatement) that can be achieved following different implementation pathways. There are several ways to interpret these graphics. For example, implementing all measures in the top 50th percentile of measures (based on their marginal net benefit score) will yield

20. Note that results for the MCA modelling for all measures are shown in Table 33.

# mitigation REPORT

only approximately 25% of total mitigation under the balanced weighting pathway as well as the pathway which seeks to implement first those measures which have relatively lower costs and are easier to implement (Figure 64 and Figure 65, respectively). By comparison, implementing the top 50th percentile of measures according to the pathway which emphasises social and environmental factors will achieve approximately 50% of the available lifetime technical mitigation potential (Figure 66).

Key power sector measures (identified in the figures below) achieve relatively large amounts of abatement (nuclear power

and renewables, for example) but generally have marginal net benefit scores which lie in the lower 50th percentile of scores for all measures. As a consequence, once implemented, the proportion of total abatement achieved reaches approximately 75% for all pathways.

Implementing the final quartile of mitigation potential in all three pathways will become harder, as measures become increasingly costly, with more substantially negative social and environmental impacts and also as the limits of technological possibilities are reached.

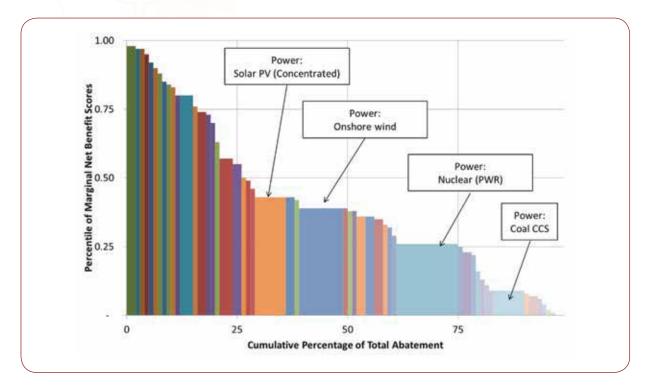



Figure 64: Proportion of total abatement potential nationally plotted against marginal abatement net benefit scores (also shown as percentiles of all scores) for the balanced weighting abatement pathway.

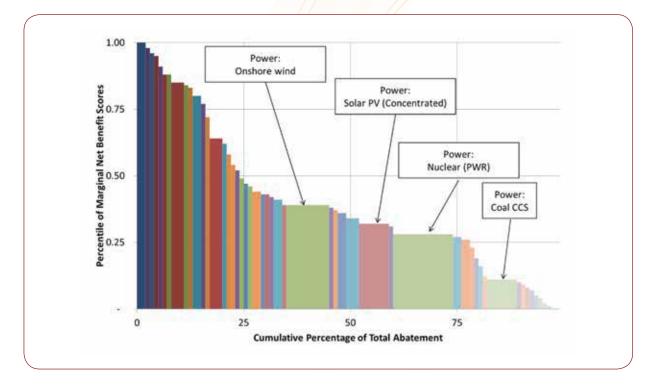



Figure 65: Proportion of total abatement potential nationally plotted against marginal abatement net benefit scores (also shown as percentiles of all scores) for the abatement pathway which emphasises the cost and implementability of mitigation measures

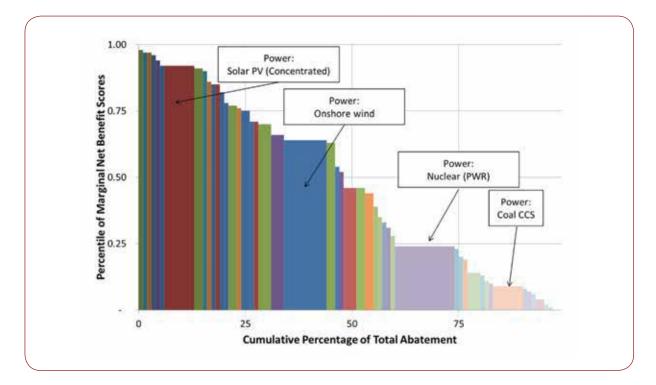



Figure 66: Proportion of total abatement potential nationally plotted against marginal abatement net benefit scores (also shown as percentiles of all scores) for the abatement pathway which emphasises social and environmental factors

# 20. The Wider Impacts of Implementing the National Abatement Pathway

In Section 12, the importance of the macroeconomic impact assessment in decision-making relating to pathways was described. The structure of the analysis (based on the application of the INFORUM model) is also described there. The analysis is undertaken for the 100% level of mitigation, with all measures applied. The economic modelling gives results for gross GDP and employment. The full sets of results are reported in Technical Appendix B; Macroeconomics, with the key results summarised below. For a full discussion of the macroeconomic impacts modelling methodology and results, please refer to Appendix B.

#### 20.1 Impacts on Gross Domestic Product

The result of the GDP impact analysis indicates that the economy will grow (expressed in terms of GDP, taking the current GDP as the basis) by R48 billion on average, assuming all mitigation measures are implemented. This constitutes approximately 1.5% of current GDP.

In considering this 1.5% figure, the factors which influence both positive and negative changes in the GDP need to be considered. While backward linked impacts are mostly positive (driven by capital expenditure and increased operating expenditure associated with the mitigation measures) the forward linkages often lead to negative GDP changes, driven by increases in prices. The fact that the final outcome gives a positive change in GDP for all sectors is, in itself, a significant conclusion. The impact per sector is shown in Figure 67 below.

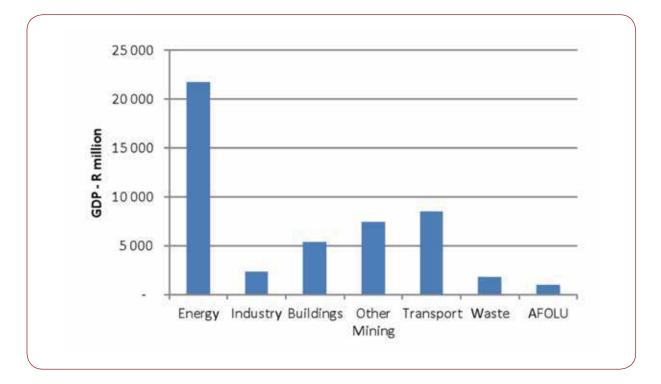



Figure 67: GDP impact per sector (value, R million) assuming 100% of technical mitigation potential is implemented

It is evident that the energy sector dominates. But it is notable that that this dominance is concentrated at the middle and lower end of the mitigation measure priority range (See Figure 63). On the other hand, building and transport measures are also significant but are concentrated at the higher end of the mitigation priority range.

With the INFORUM model the results are analysed over the full 40 year period covered in the mitigation assessment. A plot of the marginal change in GDP over this period is shown in Figure 68 below.

The declining trend over time is due to the inclusion of less economically favourable measures in the later decades. The average marginal impact on GDP is R48 million, with a peak of R70 million in 2025 (Figure 68). The marginal impact in 2010 is zero because no additional mitigation has been implemented yet at the beginning of the projection.

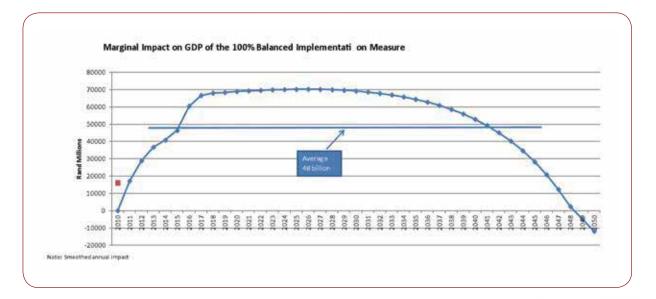
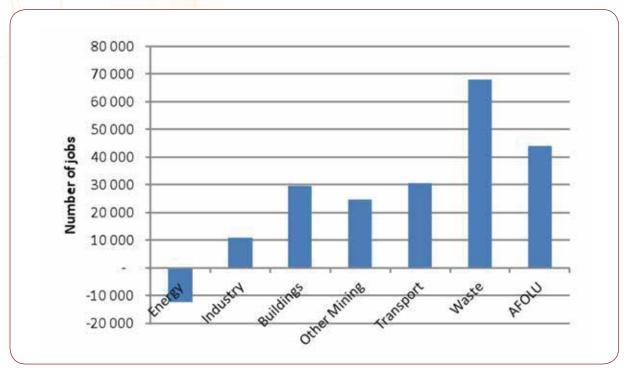



Figure 68: The varying impact over time on GDP, assuming all available mitigation potential is implemented




#### 20.2 Impacts on Employment

The analysis shows that a final total of 195,000 net jobs is created, on average over the 40 year period being assessed.<sup>21</sup> This represents 1.2% of the average of the projected number

of jobs in the South African economy over the period 2010 to 2050. The employment gains are, therefore, modest.

The net change in jobs per sector is shown in Figure 69 below, assuming all quantified mitigation potential is implemented.



#### Figure 69: Impact on jobs per sector assuming 100% of technical mitigation potential is implemented

The negative figure for jobs in the energy sector is associated primarily with the structural change in the energy economy as coal-fired power stations, with the associated mining industry jobs, are displaced with less employment-intensive measures. Both the waste and AFOLU sectors include measures which are employment-intensive.

Due to the importance of the waste and AFOLU sectors from an employment point of view, the employment figures from the INFORUM model have been adjusted, taking into consideration that these sectors have different relationships between GDP and employment compared to the standard figures in the model. This adjustment amounts to an average of 98,000 jobs. The impact of investment is positive in all cases. For energy and transport, the backward linked impact due to operational cost changes is negative but all other sectors have positive impacts. With regard to forward linked impacts on employment, associated with price changes, the pattern is the same as for GDP: negative for all sectors bar mining and buildings.

The trends over time for all employment are shown in Figure 70 below, based on the results of the INFORUM model, with the waste and AFOLU figures adjusted.

The results directly from the INFORUM model and with adjustments for waste and AFOLU sectors are shown. As with GDP the downward trend towards the later decades relates to the inclusion later in the period of analysis of measures with poorer employment characteristics (waste and AFOLU sectors excluded).

21. Includes adjustment of INFORUM results for AFOLU and waste sectors.

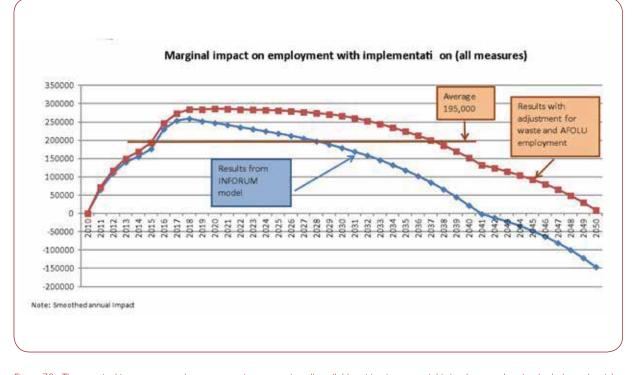



Figure 70: The marginal impact on employment over time, assuming all available mitigation potential is implemented under the balanced weighting pathway

#### 20.3 Conclusions With Regard to Economic Impact

With regard to GDP impact, the modelling shows a positive outcome in terms of backward linkages for all sectors. With regard to forward linked impact the results are negative for energy, transport, waste and AFOLU sectors, associated with increases in net costs and hence the need for price increases on products and services associated with these sectors which reduces economic efficiency. In the case of the mining and buildings sectors, the forward impacts are positive, with industry being neutral. In total, if all mitigation measures are implemented, the marginal impact on GDP is approximately a 1.5% increase. This is a modest impact but is, nevertheless, significant in being positive.

Turning to the impact on employment, with the full implementation of mitigation potential the impact on employment is an increase of about 1.2%, also a modest increase but also significant in that it is positive. The net impact is negative in the case of the energy sector (largely because of the loss of low-skilled jobs in the coal mining sector as the proportion of renewables and nuclear power in South Africa's energy mix grows and hence demand for coal decreases). The impact on employment is positive for all other sectors with the waste sector as the biggest contributor, followed by AFOLU, buildings, transport and mining. In conclusion, the economic assessment conducted in this analysis aims to illustrate the possible economic impacts from implementation of the range of mitigation measures identified in this study. It shows that there are considerable backward linked GDP and employment gains but these are countered by forward linked effects for many sectors as prices increase due to implementation of mitigation measures with a negative impact on GDP and jobs. It is accepted that no economic model is perfect and that the complexity of the economy combined with the complex set of mitigation measures applied to many sectors of the economy means that the results are useful mainly to show the broad scale and trends with respect to economic impacts.

Further, while the economic analysis has been important for comparing the relative merits of individual mitigation measures, the overall economic impact results are of secondary importance to this particular study. In considering the concept of a lower-carbon economy the GHG mitigation benefit is clearly the most important factor. This presentation of the economic impacts aims to stimulate debate rather than inform policy. Further work will be required to identify the economic costs of climate change and compare them to various adaptation and mitigation options. As part of this further work, there is a need to better understand the drivers and barriers of investment into greener technology.

# Chapter VI: Summary

### 21. Summary of Key Project Outcomes

The following key project outcomes have been achieved:

#### Reference Case Projection of Future GHG Emissions

Greenhouse gas (GHG) emissions projections developed under this study are based on a targeted level of future economic growth. This target is defined by the moderate growth scenario according to the National Development Plan. Two reference case emission projections have been developed. The first, a 'without measures' (WOM) projection, assumes that no mitigation occurs between 2000 and 2050. The second, 'with existing measures' (WEM) projection, explicitly accounts for the impacts of climate change policy and for early mitigation measures implemented before 2010. The WEM projection extends from 2010 to 2050. For the period 2000 to 2010 the projections follow the actual path of observed emissions according to the draft 2010 national Greenhouse Gas Inventory (GHGI), with the exception of the power sector where additional information from Eskom (relating to the net calorific value of coal) was used to revise the emissions estimate in the draft GHGI.

Under the WOM reference case, GHG emissions reach 1,692  $MtCO_2e$  by 2050. Under the WEM reference case, the equivalent figure is 1,593  $MtCO_2e$  by 2050. The WEM projection is used as the reference case for all future mitigation potential because its starting point is aligned to historical emissions and the projection represents the pathway for future emissions assuming no additional mitigation is implemented.

The reference case GHG emissions determined in this study for 2050 resemble results from earlier work conducted under the Long-Term Mitigation Scenarios (LTMS) study. The LTMS 'growth without constraint' reference case projected GHG emissions in 2050 of 1,638 MtCO<sub>2</sub>e. Given the adjustment for the net calorific value of coal, the emissions projections for 2020 and 2030 in this study are lower than those estimated under the LTMS study.

#### Accounting for Early Mitigation Action

The study has accounted for early mitigation actions implemented in each sector between 2000 and the present. These were determined through a review of climate change policies and measures, and through consultation with industry in order to understand and quantify the impacts of mitigation measures already implemented within sectors.

For some actions, the impact on the emissions or energy savings achieved was assessed based on information provided directly by industry or the relevant implementing bodies. In some cases, for mitigation measures in industry and the energy sector, the emissions reductions were calculated based on the levels of up-take of the measure in 2010 which were agreed with industry.

#### Sensitivity Analysis for Emissions

A sensitivity analysis was carried out based on a higher and lower rate of economic growth. The changes in growth were used to derive high and low growth projections for the energy, industry and waste sectors. Emission projections for the transport sector are based on forecasts of transport demand made by an external study; therefore it was not possible to estimate the sensitivity of emissions to macroeconomic growth for the sector. The emissions projection assumes that economic growth is not a driver of emissions in the agriculture, forestry and other land use (AFOLU) sector because the supply of agricultural land is already constrained. For this reason the AFOLU sector was also excluded from the sensitivity analysis. Note that collectively, the transport and AFO-LU sectors account for 11% of total emissions in 2050 under the WEM projection, so the exclusion of these sectors (while likely to result in an under-estimate of sensitivity) is not likely to have a significant impact on the overall result.

Low and high growth projections of 3.8% and 5.4% respectively per annum by 2050 were based on inputs provided by National Treasury. Under the low growth scenario, GHG emissions are projected to be 15% lower (1,361 MtCO<sub>2</sub>e) by 2050 than the reference case WEM projection. Under the higher growth scenario, GHG emissions are projected to be 18% higher (1,882 MtCO<sub>2</sub>e) by 2050 than the reference case WEM projection.

#### Updated Assessment of Mitigation Potential for Key Sectors

One of the primary outputs from this study is a comprehensively updated and very detailed assessment of mitigation potential for key sectors of the South African economy. The study has successfully identified a broad range of technically feasible mitigation measures across the energy, industry, transport, waste and AFOLU sectors (172 measures in total). Mitigation opportunities are presented that cover emissions from a variety of different sources including fugitive emissions, process emissions, direct fuel emissions and/or indirect electricity related emissions (as defined by the emissions sources of each key sector).

In all cases, the sectoral and subsectoral mitigation potential estimates have been developed in close consultation with a broad range of stakeholders, including industry, government and civil society, through a mechanism of sector specific task teams established for this purpose.

Nationally, the technical mitigation potential (assuming 100% implementation of all identified mitigation options) is 853 Mt- $CO_2e$  in 2050, representing a 55% reduction of emissions relative to the reference case WEM projection. The equivalent figures for 2020 and 2030 are 100 and 340 MtCO<sub>2</sub>e (15% and 40% reduction relative to WEM), respectively.

For the energy sector, technical mitigation potential in 2020, 2030 and 2050 is 33, 173 and 467  $MtCO_2e$  (accounting for 33%, 51% and 55% of available potential in those three snapshots). In calculating total technical mitigation potential for the energy sector, abatement estimates for the other energy industries and petroleum refining sectors have been adjusted to account for reductions in liquid fuels as a result of the implementation of abatement measures identified in the transport sector.

The industry sector accounts for 45, 104 and 258 MtCO<sub>2</sub>e in 2020, 2030 and 2050. For the transport sector, the equivalent mitigation estimates (based on direct emission savings only) are 7, 23 and 62 MtCO<sub>2</sub>e. Mitigation estimates in the waste and AFOLU sectors are smaller: 10, 22 and 40 MtCO<sub>2</sub>e in the waste sector and 5, 10 and 5 MtCO<sub>2</sub>e in the AFOLU sector.

#### Development of Marginal Abatement Cost Curves

Marginal abatement cost curves have been developed for a range of sectors and subsectors, with summaries provided for key sectors and on a national scale. This study represents the first comprehensive attempt to build MACCs for the South African economy as a whole.

#### Development of National Abatement Pathways

The assessment of technical mitigation potential discussed above is based on abatement estimates for individual measures. In developing national abatement pathways, the study has also focused on assessing options for implementing and prioritising groupings of mitigation measures. To achieve any particular abatement pathway, it is necessary to select a target level of abatement and to decide which measures to implement and which not to. Individual pathways, assuming different levels of ambition (targeted levels of available mitigation potential), have been illustrated.

A multi-criteria analysis (MCA) framework was developed expressly to incorporate additional factors into the decision-making process surrounding implementation of mitigation measures. The National Climate Change Response Policy (NCCRP) states clearly that the strategic response to mitigation must facilitate a "long-term transition to a climate-resilient, equitable and internationally competitive lower-carbon economy and society – a vision premised on Government's commitment to sustainable development and a better life for all" (DEA, 2011a p10) To this end, the MCA framework has been developed to allow consideration of factors other than mitigation and cost – including economic and social impact (including jobs), non-GHG environmental impacts and implementability. By weighting these factors differently when calculating a weighted average score for each measure, it has been possible to derive different abatement pathways – assuming differences in prioritising the order of implementation of those measures. The three pathways developed on this basis are the following.

- A balanced weighting pathway, representing a broad consensus among all interest groups represented on the Technical Working Group on Mitigation.
- A pathway which emphasises costs and implementability of mitigation measures.
- A pathway which emphasises social and non-GHG environmental impacts of mitigation measures.

These concepts were further developed to construct a marginal abatement net benefit curve (MANBC). For any one pathway the MANBC provides a measure of net benefit achieved through implementing the next mitigation measure - effectively describing in a single metric the ease of implementation for each measure. This concept is combined with the concept of abatement ambition to construct a framework for decision making to select a target level of abatement and implement mitigation measures to achieve it. Intuitively, it will be reasonably straightforward to achieve a certain level of mitigation, based on the mitigation potential identified in this study. But as the level of abatement ambition increases, so the costs, technological complexity and potential for significantly negative economic, social and environmental impacts associated with implementing additional measures grows. A framework for considering these issues when developing national abatement pathways has been presented in this study. The final decision-making process in this regard falls outside the scope of the current study.

#### Assessment of the Wider Impact of National Abatement Pathways

Lastly, the wider macroeconomic impact of implementing all mitigation measures under the balanced weighting pathway has been assessed. The impact on GDP indicates an increase of about R48 billion with all mitigation measures (100% ambition) applied over the programming period (the next 40 years). This constitutes approximately 1.5% of current GDP. In considering this 1.5% figure, the factors which influence the GDP change both positively and negatively need to be

considered. While backward-linked impacts are mostly positive (driven by capital expenditure and increased operating expenditure associated with the mitigation measures) the forward linkages often give negative GDP changes, driven by increases in prices.

The net impact (the impact of the assessment, less the impact of the counterfactual) on employment of the various measures is 97,000 jobs based on the standard figures in the INFORUM model which uses the current structure of the economy in terms of labour intensity. Adjustments have been made to employment in the waste and AFOLU sectors to account for limitations of the modelling approach. As a consequence, the adjusted impact on employment is 195,000 jobs.

When all mitigation potential is implemented, the impact differs in terms of that for GDP, in that some of the sectors have a negative employment outcome, with the employment impact within the energy sector at 12,000 jobs lost. This job loss is primarily due to the fact that the proposed measures displace coal mining, which is a labour-intensive activity. Taking the results after adjustment into consideration, the biggest employment sectors are buildings, waste, mining, transport and AFOLU.

The final total of 195,000 jobs represents 1.2% of the average projected number of jobs in the South African economy

over the period 2010 to 2050. The employment gains are, therefore, modest.

At average levels of impact on GDP of the order of 1.5% and employment of 1.2%, with all mitigation measures included, the mitigation measures considered in this analysis will not have a major impact on the economy. What gains there are from direct employment and backward linkages are counteracted by losses due to forward linked effects: prices typically increase with increasing costs associated with implementing most measures without a related gain in revenue.

In conclusion, the economic assessment conducted in this analysis aims to illustrate the possible economic impacts from implementation of the range of mitigation measures identified in this study. The complexity of the economy combined with the complex set of mitigation measures applied to many sectors of the economy means that the results are useful mainly to show the broad scale and trends with respect to economic impacts. Further, it needs to be emphasised that this analysis proceeds on the assumption that the required investments will indeed be made. As explained in the main body of the report, there are many factors which are beyond the scope of economic modelling which will influence whether this will happen.

## References

Abrahams, Y., Fischer, R., Martin, B. and McDaid, L., 2013: Smart electricity planning. Fast-tracking our transition to a healthy, modern, affordable electricity supply for all. Electricity Governance Initiative of South Africa.

Arndt, C., Davies, R., Makrelov, K. and Thurlow, J., 2011: Measuring the Carbon Content of the South African Economy. United Nations University-World Institute for Development Economics Research (UNU-WIDER), Working Paper 2011/45, (http://www.wider.unu.edu/publications/working-papers/2011/en\_GB/wp2011-045/)

Aurecon, 2012: Growth of a South African Maritime Transport Industry. NDoT SA Maritime Transport Sector Study / Part I / 27 July 2011

Council for Geoscience, 2010: Technical Report on the Geological Storage of Carbon Dioxide in South Africa. Council for Geoscience, 2010

Dane, A., Marquard, A., Engel, W., Winkler, H. and Burton. J., 2012: Existing Relevant Research, Planning and Modelling Processes Related to the Implementation of Mitigation Elements of the National Climate Change Response Policy. Report by the Energy Research Centre prepared for the Department of Environmental Affairs.

Department of Energy (DoE), 2010: South African Energy Synopsis, 2010. Pretoria, DoE.

Department of Energy (DoE), 2011: Integrated Resource Plan for Electricity 2010–2030. Pretoria, DoE.

Department of Energy (DoE), 2013a: Draft 2012 Integrated Energy Planning Report, Executive Summary (for public consultation). Pretoria, DoE, available at: http://www.energy.gov.za/files/ IEP/IEP\_Publications/Draft-2012-Integrated-Energy-Plan.pdf

DoE, 2013: Energy Balances, 2013b: Energy Balances in TJ (1999-2009).xlsx. Excel spreadsheet obtained from Department of Energy.

Department of Environmental Affairs (DEA), 2011a: The National Climate Change Response Policy White Paper: Pretoria, DEA.

Department of Environmental Affairs (DEA) 2011b: South Africa's Second National Communication under the United Nations Framework Convention on Climate Change. Pretoria, DEA. Available at: http://unfccc.int/resource/docs/natc/ snc\_south\_africa\_.pdf Department of Environmental Affairs, 2011c: National Waste Management Strategy. November 2011, Pretoria, South Africa.

Department of Environmental Affairs (DEA), 2013: Greenhouse Gas (GHG) Inventory for South Africa, 2000-2010 (Draft). Pretoria, DEA.

Department of Minerals and Energy (DME), 2003: Integrated Energy Plan for the Republic Of South Africa. Pretoria, DME.

Energy Research Centre (ERC), 2007a: Long Term Mitigation Scenarios: Technical Summary. October 2007, Pretoria, DEA.

Energy Research Centre (ERC), 2007b: Non-Energy Emissions Industrial Processes. LTMS Input Report 3, an input into the Long Term Mitigation Scenarios. Prepared for the Department of Environment Affairs and Tourism South Africa.

Energy Research Centre (ERC), 2013: The South African TIMES model (SATIM). Energy Research Centre (ERC) Systems Analysis & Planning Group. Version 2.1. Available at http://www.erc.uct.ac.za/Research/esystems-group-satim.htm.

Energy Technology Systems Analysis Programme (ETSAP), 2010: CO<sub>2</sub> Capture and Storage. Technology Brief E14, October 2010, IEA ETSAP. Available at http://www.iea-etsap.org/web/E-TechDS/PDF/E14\_%20CCS%20draft%20 oct2010\_%20GS-gc\_OK.pdf

Intergovernmental Panel on Climate Change (IPCC), 2007: Climate Change 2007: Mitigation of Climate Change, Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. [B. Metz, O.R. Davidson, P.R. Bosch, R. Dave, L.A. Meyer (eds.)], Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

Merven B, Stone A, Hughes A & Cohen B 2012: Quantifying the energy needs of the transport sector for South Africa: A bottom-up model. Energy Research Centre (ERC), University of Cape Town.

National Planning Commission (NPC), 2012: National Development Plan: Vision for 2030. Pretoria, The Presidency.

National Treasury (NT), 2012: The Medium Term Budget Policy Statement. Pretoria, National Treasury, available at: www. treasury.gov.za/documents/mtbps/2012/. National Treasury, 2013: Reducing greenhouse gas emissions and facilitating the transition to a green economy, carbon tax policy paper for public comment. Pretoria, National Treasury.

PDG, 2013: Western Cape Infrastructure Framework. Western Cape Government, May 2013, Cape Town.

Resource-Net, 2011: Coke Market Survey Annual Report, 2011. Available at: www.resource-net.com/files/Sample\_Pag-es.pdf

Transnet, 2012: Transnet Sustainability Report (2012). Available at: http://www.transnet.net/InvestorRelations/Transnet%20Reports/Sustainability%20Report%202012.pdf

South African Petroleum Industry Association (Sapia), 2011: 2010 Annual Report. Available at: http://www.sapia.co.za/publications/annual-reports.html

South African Petroleum Industry Association (Sapia), 2013: 2012 Annual Report. Available at: http://www.sapia.co.za/pub-lications/annual-reports.html

United Nations, 1992: United Nations Framework Convention on Climate Change. Available at http://unfccc.int/files/ essential\_background/background\_publications\_htmlpdf/ application/pdf/conveng.pdf.

United Nations, 1998: Kyoto Protocol to the United Nations Framework Convention on Climate Change. Available at http://unfccc.int/resource/docs/convkp/kpeng.pdf.

United Nations Framework Convention on Climate Change (UNFCCC), 2000: Review of the Implementation of Commitments and of Other Provisions of the Convention, UNFCCC guidelines on reporting and review, FCCC/CP/1999/7, Fifth session of the Conference of the Parties, Bonn, 25 October-5 November 1999 (http://unfccc.int/resource/docs/cop5/07. pdf)

World Bank, 2010: World Development Indicators Online Database. Washington, DC, World Bank.

## Additional Information

### List of Mitigation Measures, Abatement Potential and Marginal Abatement Costs

A complete list of mitigation measures, abatement potential  $(ktCO_2e)$  and marginal abatement costs  $(R/tCO_2e)$  abatement) for key sectors, sectors and subsectors covered in the Mitigation Potential Analysis is shown in Table 32. The list includes all 172 measures identified across the five key sectors considered.

Results are summarised for the three key time periods covered in the study: 2020, 2030 and 2050. Detailed descriptions of all the measures, as well as the procedures to develop, cost and estimate mitigation potential are provided in the relevant appendices for key sectors (Technical Appendices C–G).

Identifiers for each measure shown in Table 32 below are referenced consistently throughout the main report and in the technical appendices.

Results from the multi-criteria analysis, including quantitative data informing the scoring of options for all measures as well as score for each of the main criteria and overall weighted score for the balanced weighting pathway, are shown in Table 33.

Overall scores and rankings for all measures under the balanced weighting pathway; the pathway which emphasises costs and implementability; and the pathway which emphasises social and environmental factors are shown in Table 34.

|    | Key    |           |                         |                                                                                                        | 2020      |      | 2030      | 0     | 2050      |       |
|----|--------|-----------|-------------------------|--------------------------------------------------------------------------------------------------------|-----------|------|-----------|-------|-----------|-------|
| ₽  | Sector | Sector    | Subsector               | Measure                                                                                                | Abatement | MAC  | Abatement | MAC   | Abatement | MAC   |
| _  | Energy | Non-Power | Other Energy Industries | Increase onsite gas-fired power generation - using internal combustion<br>engines                      | 952       | -536 | 937       | -313  | 914       | -16   |
| 2  | Energy | Non-Power | Other Energy Industries | Waste heat recovery power generation                                                                   | 637       | -334 | 1,754     | -337  | 1,732     | -341  |
| m  | Energy | Non-Power | Other Energy Industries | Waste gas recovery and utilisation                                                                     | 488       | 194  | 488       | 57    | 488       | - 18  |
| 4  | Energy | Non-Power | Other Energy Industries | Carbon capture and storage (CCS) - process emissions from existing plants (storage onshore)            | 0         | 0    | 5,236     | 838   | 5,248     | 838   |
| ß  | Energy | Non-Power | Other Energy Industries | Energy monitoring and management system                                                                | 192       | -331 | 385       | -373  | 385       | -437  |
| 9  | Energy | Non-Power | Other Energy Industries | Improved process control                                                                               | 215       | -216 | 215       | -258  | 215       | -322  |
| 7  | Energy | Non-Power | Other Energy Industries | Improved electric motor system controls and variable speed drives (VSDs)                               | 329       | -652 | 653       | -658  | 644       | -666  |
| œ  | Energy | Non-Power | Other Energy Industries | Energy efficient utility systems                                                                       | 4         | -617 | 280       | -623  | 276       | -630  |
| 6  | Energy | Non-Power | Other Energy Industries | Improved heat systems                                                                                  | 574       | -802 | 1,139     | -808  | 1,125     | -819  |
| 0  | Energy | Non-Power | Other Energy Industries | CCS - process emissions from existing plants (storage offshore)                                        | 0         | 0    | 13,875    | 973   | 13,908    | 973   |
| =  | Energy | Non-Power | Other Energy Industries | CCS - process emissions from new plants                                                                | 0         | 0    | 6,220     | 729   | 18,694    | 728   |
| 12 | Energy | Non-Power | Petroleum Refining      | Improve steam generating boiler efficiency                                                             | 64        | -365 | 63        | -513  | 62        | -702  |
| 13 | Energy | Non-Power | Petroleum Refining      | Improve process heater efficiency                                                                      | 30        | -346 | 29        | -494  | 29        | -682  |
| 4  | Energy | Non-Power | Petroleum Refining      | Waste heat recovery and utilisation                                                                    | 85        | 165  | 168       | 21    | 164       | -157  |
| 15 | Energy | Non-Power | Petroleum Refining      | Minimise flaring and utilise flare gas as fuel                                                         | 42        | 319  | 42        | 319   | 42        | 319   |
| 9  | Energy | Non-Power | Petroleum Refining      | Efficient energy production combined cycle gas turbine and combined heat and power (CCGT and CHP)      | 0         | 0    | 276       | 289   | 267       | 401   |
| 17 | Energy | Non-Power | Petroleum Refining      | Waste heat boiler and expander applied to flue gas from the fluid catalytic cracking (FCC) regenerator | 50        | 371  | 50        | 229   | 49        | 56    |
| 81 | Energy | Non-Power | Petroleum Refining      | CCS - existing refineries                                                                              | 0         | 0    | 998       | 1,745 | 1,007     | 1,848 |
| 61 | Energy | Non-Power | Petroleum Refining      | Energy monitoring and management system                                                                | 87        | -402 | 85        | -519  | 84        | -667  |
| 20 | Energy | Non-Power | Petroleum Refining      | Improved process control                                                                               | 87        | -114 | 85        | -227  | 84        | -368  |
| 21 | Energy | Non-Power | Petroleum Refining      | Improved heat exchanger efficiencies                                                                   | 68        | 011  | 67        | -34   | 99        | -213  |
| 22 | Energy | Non-Power | Petroleum Refining      | Improved electric motor system controls and VSDs                                                       | 28        | 142  | 55        | 154   | 53        | 178   |
| 23 | Energy | Non-Power | Petroleum Refining      | Energy-efficient utility systems                                                                       | 61        | -124 | 37        | -117  | 36        | -102  |
| 24 | Energy | Non-Power | Petroleum Refining      | CCS - new refineries                                                                                   | 0         | 0    | 994       | 1,392 | 1,949     | I,465 |
| 25 | Energy | Non-Power | Coal Mining             | Coal mine methane recovery and utilisation for power and/or heat generation                            | 0         | 0    | 144       | 30    | 483       | 30    |

Table 32: Abatement (ktCO<sub>2</sub>e) and Marginal Abatement Cost (MAC, RhCO<sub>2</sub>e) for all measures in 2020, 2030 and 2050

|    | V        |           |                                   |                                                                             | 2020      |       | 2030      |       | 2050      |        |
|----|----------|-----------|-----------------------------------|-----------------------------------------------------------------------------|-----------|-------|-----------|-------|-----------|--------|
| ₽  | Sector   | Sector    | Subsector                         | Measure                                                                     | Abatement | MAC   | Abatement | MAC   | Abatement | MAC    |
| 26 | Energy   | Non-Power | Coal Mining                       | Coal mine methane recovery and destruction by flaring                       | 0         | 0     | 147       | 83    | 494       | 83     |
| 27 | Energy   | Non-Power | Coal Mining                       | Use of 1st generation biodiesel (B5) for transport and handling equipment   | 13        | 305   | 15        | 329   | 0         | 0      |
| 28 | Energy   | Non-Power | Coal Mining                       | Improve energy efficiency of mine haul and transport operations             | 57        | 744   | 06        | 163   | 151       | -1,057 |
| 29 | Energy   | Non-Power | Coal Mining                       | Use of 2nd generation biodiesel (B50) for transport and handling equipment  | 0         | 0     | 149       | 184   | 252       | 214    |
| 30 | Energy   | Non-Power | Coal Mining                       | Use of 2nd generation biodiesel (B100) for transport and handling equipment | 0         | 0     | 0         | 0     | 503       | 193    |
| m  | Energy   | Non-Power | Coal Mining                       | Process, demand & energy management system                                  | 30        | -894  | 71        | 106-  | 118       | -913   |
| 32 | Energy   | Non-Power | Coal Mining                       | Energy efficient lighting                                                   | 9         | -800  | 4         | -807  | 24        | -817   |
| 33 | Energy   | Non-Power | Coal Mining                       | Install energy-efficient electric motor systems                             | 121       | -564  | 284       | -568  | 473       | -575   |
| 34 | Energy   | Non-Power | Coal Mining                       | Optimise existing electric motor systems (controls and VSDs)                | 61        | -869  | 142       | -876  | 236       | -887   |
| 35 | Energy   | Non-Power | Coal Mining                       | Onsite clean power generation                                               | 97        | 1,302 | 227       | 1,313 | 378       | 1,330  |
| 36 | Energy   | Power     | Electricity and Heating           | Nuclear pressurised water reactor (PWR)                                     | 0         | 126   | 52,973    | 126   | 132,433   | 126    |
| 37 | Energy   | Power     | Electricity and Heating           | Gas CCGT                                                                    | 2,913     | 721   | 6,797     | 992   | 24,016    | 1,224  |
| 38 | Energy   | Power     | Electricity and Heating           | Onshore wind                                                                | 12,524    | 220   | 33,396    | 199   | 78,794    | 199    |
| 39 | Energy   | Power     | Electricity and Heating           | Concentrated solar power (CSP) (parabolic trough)                           | 1,966     | 379   | 5,897     | 304   | 11,009    | 304    |
| 40 | Energy   | Power     | Electricity and Heating           | Solar photovoltaic (PV) (concentrated)                                      | 8,921     | 995   | 20,977    | 782   | 54,227    | 782    |
| 4  | Energy   | Power     | Electricity and Heating           | Import (hydro)                                                              | 0         | -95   | 1,695     | -95   | 8,947     | -95    |
| 42 | Energy   | Power     | Electricity and Heating           | Coal CCS                                                                    | 0         | 244   | 8,039     | 202   | 87,852    | 202    |
| 43 | Energy   | Power     | Electricity and Heating           | Biomass                                                                     | 006       | 429   | 2,699     | 420   | 11,471    | 420    |
| 44 | Energy   | Power     | Electricity and Heating           | Landfill gas (LFG)                                                          | 619       | 346   | 964       | 346   | 3,166     | 346    |
| 45 | Energy   | Power     | Electricity and Heating           | Energy from waste                                                           | 742       | 1,686 | 3,712     | 1,686 | 4,640     | 1,686  |
| 46 | Industry | Metals    | Primary Aluminium Pro-<br>duction | Best process selection for primary aluminium smelting                       | 481       | -579  | 614       | -564  | 1,315     | -538   |
| 47 | Industry | Metals    | Primary Aluminium Pro-<br>duction | Switch to secondary production and increase recycling                       | 0         | 0     | 1,935     | -311  | 6,000     | -280   |
| 48 | Industry | Metals    | Primary Aluminium Pro-<br>duction | Energy monitoring & management system                                       | 40        | -452  | 55        | -439  | 126       | -408   |
| 49 | Industry | Metals    | Primary Aluminium Pro-<br>duction | Improved process control                                                    | 161       | -529  | 220       | -519  | 502       | -496   |
| 50 | Industry | Metals    | Primary Aluminium Pro-<br>duction | Improved electric motor system controls and variable speed drives           | 121       | 12    | 165       | 46    | 377       | 8      |
| 5  | Industry | Metals    | Primary Aluminium Pro-<br>duction | Energy-efficient utility systems                                            | 40        | 322   | 55        | 369   | 126       | 468    |

|    | Kev      |          |                           |                                                                                              | 2020      |        | 2030      |       | 2050      |       |
|----|----------|----------|---------------------------|----------------------------------------------------------------------------------------------|-----------|--------|-----------|-------|-----------|-------|
| ₽  | Sector   | Sector   | Subsector                 | Measure                                                                                      | Abatement | MAC    | Abatement | MAC   | Abatement | MAC   |
| 52 | Industry | Metals   | Ferroalloys Production    | Implementing best available production techniques                                            | 160'1     | -338   | 2,871     | -337  | 6,588     | -302  |
| 53 | Industry | Metals   | Ferroalloys Production    | Replace submerged arc furnace semi-closed with closed type                                   | 877       | -840   | 2,325     | -876  | 5,199     | -898  |
| 54 | Industry | Metals   | Ferroalloys Production    | Waste gas recovery and power generation - CO from closed furnace                             | 1,112     | -378   | 3,481     | -332  | 7,591     | -262  |
| 55 | Industry | Metals   | Ferroalloys Production    | Waste heat recovery and power generation from semi-closed furnace -<br>Rankine cycle         | 502       | 938    | 731       | 1,056 | I,595     | 1,313 |
| 56 | Industry | Metals   | Ferroalloys Production    | Waste heat recovery and power generation from semi-closed furnace -<br>Organic Rankine cycle | 502       | I ,062 | 731       | I,188 | I,595     | I,463 |
| 57 | Industry | Metals   | Ferroalloys production    | Use biocarbon reductants instead of coal/coke                                                | 838       | 278    | 2,388     | 289   | 5,911     | 299   |
| 58 | Industry | Metals   | Ferroalloys production    | Energy monitoring and management system                                                      | 263       | -867   | 351       | -874  | 766       | -882  |
| 59 | Industry | Metals   | Ferroalloys production    | Improved electric motor system controls and variable speed drives                            | 132       | 103    | 176       | 164   | 383       | 301   |
| 60 | Industry | Metals   | Ferroalloys production    | Energy-efficient utility systems                                                             | 132       | - 190  | 176       | -148  | 383       | -54   |
| 19 | Industry | Metals   | Ferroalloys production    | Improved heat exchanger efficiencies                                                         | 132       | -646   | 176       | -642  | 383       | -623  |
| 62 | Industry | Metals   | Iron and steel production | Basic oxygen furnace (BOF) waste heat and gas recovery                                       | 85        | -973   | 138       | -146  | 297       | 107   |
| 63 | Industry | Metals   | Iron and steel production | Top gas pressure recovery turbine                                                            | 52        | -858   | 84        | -553  | 180       | -460  |
| 64 | Industry | Metals   | Iron and steel production | Electric arc furnaces (EAF) and secondary production route                                   | I ,465    | 7      | 4,201     | 4-    | 9,779     |       |
| 65 | Industry | Metals   | Iron and steel production | State-of-the-art power plant                                                                 | 1,576     | 618    | 2,205     | 877   | 4,848     | 1,016 |
| 99 | Industry | Metals   | Iron and steel production | Top gas-recycling blast furnace (with CCS)                                                   | 0         | 0      | 2,148     | 909   | 4,956     | 599   |
| 67 | Industry | Metals   | Iron and steel production | CCS - blast furnace (post-combustion)                                                        | 0         | 0      | 2,120     | 825   | 4,891     | 812   |
| 68 | Industry | Metals   | Iron and steel production | State-of-the-art power plant (with CCS)                                                      | 0         | 0      | 3,341     | 1,421 | 7,465     | 1,556 |
| 69 | Industry | Metals   | Iron and steel production | Direct reduced iron (DRI) – Midrex process                                                   | 893       | 444    | 1,308     | 505   | 3,140     | 516   |
| 70 | Industry | Metals   | Iron and steel production | DRI – HYL process                                                                            | 830       | 410    | 1,219     | 463   | 2,949     | 470   |
| 71 | Industry | Metals   | Iron and steel production | DRI – ULCORED process                                                                        | 0         | 0      | 1,474     | 438   | 3,499     | 454   |
| 72 | Industry | Metals   | Iron and steel production | Energy monitoring and management system                                                      | 77        | -126   | 106       | -155  | 222       | -174  |
| 73 | Industry | Metals   | Iron and steel production | Improved process control                                                                     | 385       | 118    | 530       | 104   | 1,109     | 130   |
| 74 | Industry | Metals   | Iron and steel production | Improved electric motor system controls and variable speed drives                            | 92        | -244   | 127       | -155  | 266       | 145   |
| 75 | Industry | Metals   | Iron and steel production | Energy efficient boiler systems and kilns                                                    | 154       | 281    | 212       | 277   | 443       | 333   |
| 76 | Industry | Metals   | Iron and steel production | Energy-efficient utility systems                                                             | 62        | -244   | 85        | -155  | 177       | 145   |
| 1  | Industry | Metals   | Iron and steel production | Improved heat exchanger efficiencies                                                         | 154       | -45    | 212       | -69   | 443       | -73   |
| 78 | Industry | Minerals | Cement production         | Improved process control                                                                     | 196       | 140    | 215       | 168   | 420       | 310   |
| 79 | Industry | Minerals | Cement production         | Reduction of clinker content of cement products                                              | 754       | - 122  | 2,005     | -134  | 4,570     | -128  |

|     | Kev      |                         |                      |                                                                                     | 2020      |        | 2030      |       | 2050      |       |
|-----|----------|-------------------------|----------------------|-------------------------------------------------------------------------------------|-----------|--------|-----------|-------|-----------|-------|
| ₽   | Sector   | Sector                  | Subsector            | Measure                                                                             | Abatement | MAC    | Abatement | MAC   | Abatement | MAC   |
| 80  | Industry | Minerals                | Cement production    | Waste heat recovery from kilns and coolers/cogeneration                             | 0         | 0      | 187       | 172   | 357       | 454   |
| 81  | Industry | Minerals                | Cement production    | Utilise waste material as fuel                                                      | 196       | 71     | 918       | 40    | 1,777     | 50    |
| 82  | Industry | Minerals                | Cement production    | Geopolymer cement production                                                        | 0         | 0      | 109       | 434   | 522       | 340   |
| 83  | Industry | Minerals                | Cement production    | CCS - back-end chemical absorption                                                  | 0         | 0      | 0         | 0     | 4,641     | 910   |
| 84  | Industry | Minerals                | Cement production    | CCS - oxyfuelling                                                                   | 0         | 0      | 0         | 0     | 2,321     | 820   |
| 85  | Industry | Minerals                | Cement production    | Energy monitoring and management system                                             | 39        | -237   | 43        | -237  | 84        | -185  |
| 86  | Industry | Minerals                | Cement production    | Improved electric motor system controls and variable speed drives                   | 47        | -227   | 122       | -146  | 236       | 5     |
| 87  | Industry | Minerals                | Cement production    | Energy-efficient utility systems                                                    | 26        | 79     | 68        | 199   | 131       | 488   |
| 88  | Industry | Minerals                | Lime production      | Installation of shaft preheaters                                                    | 148       | -161   | 312       | -222  | 469       | -311  |
| 89  | Industry | Minerals                | Lime production      | Replace rotary kilns with vertical kilns or parallel flow regenerative kilns (PFRK) | 94        | 461    | 198       | 637   | 597       | 1,090 |
| 06  | Industry | Minerals                | Lime production      | Use alternative fuels including waste and biomass                                   | 0         |        | 250       | 407   | 1,002     | 470   |
| 16  | Industry | Minerals                | Lime production      | CCS for lime production                                                             | 0         |        | 0         |       | 4,848     | 889   |
| 92  | Industry | Minerals                | Lime production      | Energy monitoring and management system                                             | 01        | -221   |           | -289  | 18        | -381  |
| 93  | Industry | Minerals                | Lime production      | Improved process control                                                            | 19        | -72    | 20        | - 100 | 30        |       |
| 94  | Industry | Minerals                | Lime production      | Improved electric motor system controls and VSDs                                    | 9         | -155   | 8         | -75   | 16        | 117   |
| 95  | Industry | Minerals                | Lime production      | Energy-efficient utility systems                                                    | 5         | -83    | 7         | 9     | 13        | 217   |
| 96  | Industry | Minerals                | Lime production      | Improved heat exchanger efficiencies                                                | 13        | -151   | 13        | -210  | 20        | -290  |
| 76  | Industry | Chemicals<br>production | Chemicals production | CCS for new ammonia production plants process emissions                             | 0         | 0      | 011       | 585   | 945       | 585   |
| 98  | Industry | Chemicals<br>production | Chemicals production | Revamp: increase capacity and energy efficiency                                     | 316       | - 1 60 | 842       |       | 1,699     | 34    |
| 66  | Industry | Chemicals<br>production | Chemicals production | N2O abatement for new production plants                                             | 76        | 48     | 185       | 29    | 686       | 20    |
| 001 | Industry | Chemicals<br>production | Chemicals production | Energy monitoring and management system                                             | 59        | -571   | 157       | -561  | 317       | -513  |
| 101 | Industry | Chemicals<br>production | Chemicals production | Advanced process control                                                            | 21        | -208   | 56        | -315  | 3         | -388  |
| 102 | Industry | Chemicals<br>production | Chemicals production | Improved electric motor system controls and VSDs                                    | 152       | -403   | 405       | -347  | 815       | -216  |
| 103 | Industry | Chemicals<br>production | Chemicals production | Energy efficient utility systems                                                    | 51        | -143   | 135       | -55   | 272       | 147   |

|     | Kov        |                         |                                     |                                                                                 | 2020      |        | 2030      |       | 2050      |        |
|-----|------------|-------------------------|-------------------------------------|---------------------------------------------------------------------------------|-----------|--------|-----------|-------|-----------|--------|
| ₽   | Sector     | Sector                  | Subsector                           | Measure                                                                         | Abatement | MAC    | Abatement | MAC   | Abatement | MAC    |
| 104 | lndustry   | Chemicals<br>production | Chemicals production                | Increase process integration and improved heat systems                          | 42        | -367   |           | -492  | 227       | -606   |
| 105 | Industry   | Chemicals<br>production | Chemicals production                | Combined heat and power (CHP)                                                   | 221       | 292    | 581       | 659   | 1,152     | 1,310  |
| 901 | i Industry | Mining                  | Surface and underground<br>mining   | Use of 1st generation biodiesel (B5) for transport and handling equipment       | 4         | 621    | 58        | 203   | 0         | 0      |
| 107 | ndustry    | Mining                  | Surface and underground mining      | Improve energy efficiency of mine haul and transport operations                 | 186       | 667    | 349       | 46    | 798       | -1,175 |
| 108 | lndustry   | Mining                  | Surface and underground mining      | Use of 2nd generation biodiesel (B50) for transport and handling equipment      | 0         |        | 581       | 146   | 1,330     | 176    |
| 601 | ) Industry | Mining                  | Surface and underground mining      | Use of 2nd generation biodiesel (B100) for transport and handling equipment     | 0         |        | 0         |       | 2,659     | 168    |
| 011 | ) Industry | Mining                  | Surface and underground mining      | Process, demand & energy management system                                      | 518       | -1,001 | 1,521     | -955  | 3,948     | -842   |
| Ξ   | Industry   | Mining                  | Surface and underground mining      | Energy efficient lighting                                                       | 104       | -896   | 304       | -855  | 790       | -754   |
| 112 | - Industry | Mining                  | Surface and underground<br>mining   | Install energy-efficient electric motor systems                                 | 2,071     | -631   | 6,084     | -603  | 15,793    | -531   |
| 113 | lndustry   | Mining                  | Surface and underground mining      | Optimise existing electric motor systems (controls and VSDs)                    | 1,036     | -973   | 3,042     | -929  | 7,896     | -819   |
| 114 | + Industry | Mining                  | SURFACE and under-<br>ground mining | Onsite clean power generation                                                   | 1,657     | I ,554 | 4,867     | I,484 | 12,634    | 1,308  |
| 115 | i Industry | Other                   | Pulp and paper production           | Convert fuel from coal to biomass/residual wood waste                           | 1,225     | -165   | 2,978     | -219  | 6,470     | -309   |
| 116 | 5 Industry | Other                   | Pulp and paper production           | Application of co-generation of heat and power (CHP)                            | 343       | 1,417  | 1,260     | 1,197 | 2,678     | 1,499  |
| 117 | 7 Industry | Other                   | Pulp and paper production           | Energy recovery system                                                          | 406       | -139   | 403       | -284  | 875       | -406   |
| 118 | 8 Industry | Other                   | Pulp and paper production           | Energy monitoring and management system                                         | 32        | -352   | 71        | -477  | 152       | -545   |
| 611 | ) Industry | Other                   | Pulp and paper production           | Energy efficient electric motors, improved controls and variable speed drives   | 79        | -175   | 212       | -152  | 454       | -102   |
| 120 | ) Industry | Other                   | Pulp and paper production           | Energy-efficient utility systems (e.g. lighting, refrigeration, compressed air) | 34        | 178    | 16        | 215   | 195       | 295    |
| 121 | Industry   | Other                   | Pulp and paper production           | Improved process control                                                        | 102       | 32     | 201       | -44   | 437       | -151   |
| 122 | 2 Industry | Other                   | Pulp and paper production           | Energy efficient boiler systems and kilns and Improved heat systems             | 203       | 011-   | 403       | -244  | 875       | -364   |
| 123 | 8 Industry | Buildings               | Residential                         | Energy efficient appliances                                                     | 973       | -888   | 1,470     | -898  | 2,772     | -913   |
| 124 | lndustry   | Buildings               | Residential                         | Geyser blankets                                                                 | 542       | -671   | 1,168     | -728  | 2,553     | -88    |

|     | Kev       |           |                           |                                                                                       | 2020      |         | 2030      |        | 2050      |          |
|-----|-----------|-----------|---------------------------|---------------------------------------------------------------------------------------|-----------|---------|-----------|--------|-----------|----------|
| ₽   | Sector    | Sector    | Subsector                 | Measure                                                                               | Abatement | MAC     | Abatement | MAC    | Abatement | MAC      |
| 125 | Industry  | Buildings | Residential               | Improved insulation - new buildings                                                   | 1,160     | -129    | 2,104     | -151   | 4,660     | -252     |
| 126 | Industry  | Buildings | Residential               | Improved insulation - existing buildings                                              | 6969      | 190     | 1,262     | 166    | 2,796     | 55       |
| 127 | Industry  | Buildings | Residential               | Efficient lighting – fluorescent lamps (FLs)                                          | 7,019     | -923    | 8,940     | -930   | 10,660    | -942     |
| 128 | Industry  | Buildings | Residential               | Efficient Lighting - LEDs                                                             | 241       | -899    | 559       | -908   | I,333     | -922     |
| 129 | Industry  | Buildings | Residential               | Solar water heating                                                                   | 1,464     | -701    | 3,216     | -749   | 7,203     | -867     |
| 130 | Industry  | Buildings | Residential               | LPG for cooking                                                                       | 624       | 6       | 1,333     | 6      | 2,969     | œ        |
| 131 | Industry  | Buildings | Residential               | Passive building/improved thermal design - new buildings                              | 1,832     | -633    | 3,322     | -686   | 7,358     | -822     |
| 132 | Industry  | Buildings | Commercial/ institutional | Efficient lighting                                                                    | 010'1     | -923    | 2,015     | -931   | 5,799     | -943     |
| 133 | Industry  | Buildings | Commercial/ institutional | Heat pumps - existing buildings                                                       | 293       | -343    | 584       | -299   | 1,681     | -242     |
| 134 | Industry  | Buildings | Commercial/ institutional | Heat pumps - new buildings                                                            | 340       | -397    | 678       | -353   | 1,952     | -297     |
| 135 | Industry  | Buildings | Commercial/ institutional | Heating ventilation and air conditioning (HVAC) with heat recovery -<br>new buildings | 1,052     | - 1,061 | 2,107     | -1,218 | 6,100     | - I ,425 |
| 136 | Industry  | Buildings | Commercial/ institutional | HVAC variable speed drives - existing buildings                                       | 668       | -741    | 1,332     | -747   | 3,834     | -756     |
| 137 | Industry  | Buildings | Commercial/ institutional | HVAC variable speed drives - new buildings                                            | 811       | -773    | 1,618     | -779   | 4,655     | -789     |
| 138 | Industry  | Buildings | Commercial/ institutional | HVAC central air conditioners - new buildings                                         | 242       | -483    | 483       | -487   | 1,390     | -493     |
| 139 | Industry  | Buildings | Commercial/ institutional | Energy efficient appliances                                                           | 218       | -889    | 435       | -896   | 1,252     | -908     |
| 140 | Industry  | Buildings | Commercial/ institutional | Passive building/improved thermal design - new buildings                              | 2,881     | - 1,068 | 5,770     | -1,226 | 16,703    | -1,432   |
| 4   | Transport | Road      | Road                      | Road - alternative fuels - CNG                                                        | 20        | -466    | 246       | -790   | 1,579     | -1,360   |
| 142 | Transport | Road      | Road                      | Road - alternative fuels - diesel PHEV                                                | 22        | 2,656   | 202       | 1,151  | 1,152     | 65       |
| 143 | Transport | Road      | Road                      | Road - improved efficiency – petrol internal combustion engine (ICE)                  | 4,349     | 424     | 12,538    | 190    | 25,241    | -335     |
| 144 | Transport | Road      | Road                      | Road - alternative fuels - petrol hybrid electric vehicle (HEV)                       | 450       | 2,157   | 1,872     | 961    | 7,522     | 36       |
| 145 | Transport | Road      | Road                      | Road - improved efficiency - diesel ICE                                               | 1,875     | 1,667   | 8,122     | 634    | 28,448    | 9        |
| 146 | Transport | Road      | Road                      | Road - alternative fuels - petrol plug-in hybrid electric vehicle (PHEV)              | 64        | 1,930   | 467       | 660    | 1,951     | -385     |
| 147 | Transport | Road      | Road                      | Road - alternative fuels – fuel cell electric vehicle (FCEV)                          | 0         | 0       | 4         | 2,445  | 616       | 135      |
| 148 | Transport | Road      | Road                      | Road - alternative fuels - diesel hybrid electric vehicle (HEV)                       | 176       | 3,048   | 933       | 1,658  | 5,041     | 625      |
| 149 | Transport | Road      | Road                      | Road - alternative fuels – electric vehicle (EV)                                      | 0         | 0       | 57        | 1,920  | 750       | -348     |
| 150 | Transport | Road      | Road                      | Road - shifting passengers from cars to public transport                              | 820       | 3,105   | 3,087     | 729    | 9,396     | -1,128   |
| 151 | Transport | Road      | Road                      | Road - shifting freight from road to rail                                             | 1,840     | 1,375   | 2,729     | 2,085  | 2,997     | 1,497    |
| 152 | Transport | Road      | Road                      | Road - biofuels                                                                       | 1,959     | 1,808   | 8,286     | 1,108  | 30,374    | 232      |
| 153 | Transport | Rail      | Rail                      | Rail - improved efficiency – electric multiple unit (EMU) train sets                  | 0         | 0       | 102       | 2,052  | 112       | 4,340    |

0||

|          | Key           |                          |                       |                                                         | 2020      |       | 2030      | 0     | 2050      |       |
|----------|---------------|--------------------------|-----------------------|---------------------------------------------------------|-----------|-------|-----------|-------|-----------|-------|
| ₽        |               | Sector                   | Subsector             | Measure                                                 | Abatement | MAC   | Abatement | MAC   | Abatement | MAC   |
| <u>ل</u> | 154 Transport | Rail                     | Rail                  | Rail - improved efficiency - diesel                     | 47        | -35   | 147       | -187  | 372       | -575  |
| <u>ل</u> | 155 Transport | Rail                     | Rail                  | Rail - atternative fuels - hybrid diesel                | 0         | 0     | 39        | 322   | 128       | -107  |
| <u> </u> | 156 Transport | Rail                     | Rail                  | Rail - alternative fuels – compressed natural gas (CNG) | 0         | 0     | 0         | 0     | 99        | -36   |
| 157      | 57 Transport  | Rail                     | Rail                  | Rail - biofuels                                         | 33        | I,554 | 74        | 1,321 | 380       | 936   |
| <u> </u> | 158 Transport | Aviation                 | Aviation              | Aviation - biofuels                                     | 212       | 1,131 | 571       | 632   | 696       | -17   |
| 15       | 159 Waste     | Municipal<br>solid waste | Municipal solid waste | LFG recovery and generation                             | 4,843     | 68    | 11,325    | 68    | 28,020    | 68    |
| 160      | 50 Waste      | Municipal<br>solid waste | Municipal solid waste | LFG recovery and flaring                                | 2,076     | 86    | 2,912     | 86    | 3,002     | 86    |
| 161      | 51 Waste      | Municipal<br>solid waste | Municipal solid waste | Paper recycling                                         | 1,506     | 359   | 2,802     | 359   | 3,223     | 628   |
| 162      | 52 Waste      | Municipal<br>solid waste | Municipal solid waste | Energy from waste                                       | 869       | 368   | 112       | 368   | 197       | 657   |
| 163      | 53 Waste      | Municipal<br>solid waste | Municipal solid waste | Home composting                                         | 83        | 371   | 2,935     | 371   | 2,913     | 892   |
| 164      | 54 Waste      | Municipal<br>solid waste | Municipal solid waste | Windrow composting                                      | 176       | 649   | 155       | 649   | 176       | 1,136 |
| 165      | 55 Waste      | Municipal<br>solid waste | Municipal Solid Waste | In-vessel composting                                    | 189       | 763   | 682       | 763   | 771       | 1,335 |
| Ι¢       | 166 Waste     | Municipal<br>solid waste | Municipal solid waste | Anaerobic digestion                                     | 234       | 903   | 1,198     | 903   | 1,354     | I,580 |
| 167      | 57 AFOLU      | AFOLU                    | AFOLU                 | Expanding plantations                                   | 2,418     | 16-   | 5,240     | -362  | 0         | -554  |
| I 68     | 68 AFOLU      | AFOLU                    | AFOLU                 | Biochar addition to cropland                            | 619       | -35   | 473       | -110  | 939       | -221  |
| 169      | 69 AFOLU      | AFOLU                    | AFOLU                 | Treatment of livestock waste                            | 155       | -33   | I ,485    | -85   | 1,485     | -85   |
| -1       | I 70 AFOLU    | AFOLU                    | AFOLU                 | Rural tree planting (thickets)                          | 1,392     | 28    | I ,532    | 31    | 181       | 13    |
| 171      | 71 AFOLU      | AFOLU                    | AFOLU                 | Urban tree planting                                     | 539       | 39    | 1,016     | 74    | 1,671     | 34    |
| 172      | 72 AFOLU      | AFOLU                    | AFOLU                 | Restoration of mesic grasslands                         | 192       | 482   | 461       | 1,158 | 499       | 1,254 |

\_

Table 33: Quantitative data informing the scoring of options for the Industry sector scoring as well as score for main criteria and overall weighted score for the Balanced Weighting pathway (NPV – net present value, GPV – gross value added)

|                                                                                                       |                                  |   |                 | Total                                        | NPV of                                        | GVA im-                                      | lohs created                                         | Ratio of                         |       |                    |                  | Uno. CHG                | lmnle.           |
|-------------------------------------------------------------------------------------------------------|----------------------------------|---|-----------------|----------------------------------------------|-----------------------------------------------|----------------------------------------------|------------------------------------------------------|----------------------------------|-------|--------------------|------------------|-------------------------|------------------|
| Subsector Measure Score al (kt                                                                        | Score                            |   | en<br>al<br>(kt | emissions<br>abated<br>(ktCO <sub>2</sub> e) | costs per<br>ktCO <sub>2</sub> e<br>mitigated | pact per<br>ktCO <sub>2</sub> e<br>mitigated | Jous created<br>per ktCO <sub>2</sub> e<br>mitigated | rauo or<br>unskilled<br>to total | Cost  | Economic<br>impact | Social<br>impact | environmental<br>impact | ment-<br>ability |
| Other energy Increase onsite gas-fired power 67.81 3<br>industries tion engines                       | 67.81                            |   | (*)             | 32,661                                       | -63.41                                        | 11.07                                        | 0.08                                                 | 0.34                             | 80.63 | 71.12              | 34.01            | 75.00                   | 85.00            |
| Other energy Waste heat recovery power 53.24 5: and ustries generation                                | 53.24                            |   | .0              | 52,908                                       | -29.00                                        | 7.42                                         | 0.04                                                 | 0.31                             | 72.85 | 65.05              | 31.77            | 75.00                   | 25.00            |
| Other energy Waste gas recovery and utilisation 50.69 16 industries                                   | 50.69                            |   | 16              | 16,836                                       | 32.09                                         | -0.80                                        | -0.02                                                | 0.42                             | 59.04 | 51.38              | 28.49            | 75.00                   | 42.50            |
| Other energy CCS - process emissions from 31.50 120 industries existing plants (storage onshore)      | 31.50                            |   | 120             | 20,930                                       | 77.15                                         | -9.88                                        | -0.08                                                | 0.35                             | 48.85 | 36.28              | 24.40            | 30.00                   | 17.50            |
| Other energy Energy monitoring and manage-<br>64.94 11, mout system                                   | 64.94                            |   | Ξ               | 11,727                                       | -34.20                                        | 5.66                                         | 0.04                                                 | 0.34                             | 74.02 | 62.13              | 31.82            | 70.00                   | 92.50            |
| Other energy Improved process control 64.90 7, industries                                             | 64.90                            |   | 7,              | 7,639                                        | -32.45                                        | 5.95                                         | 0.04                                                 | 0.34                             | 73.63 | 62.61              | 31.76            | 70.00                   | 92.50            |
| Other Energy Improved electric motor system 68.36 19<br>Industries controls and VSDs                  | 68.36                            | _ | 61              | 9,563                                        | -64.98                                        | 11.18                                        | 0.08                                                 | 0.34                             | 80.98 | 71.32              | 34.06            | 70.00                   | 92.50            |
| Other energy Energy efficient utility systems 67.92 8.                                                | 67.92                            |   | õ               | 8,384                                        | -60.31                                        | 10.63                                        | 0.07                                                 | 0.34                             | 79.93 | 70.39              | 33.76            | 70.00                   | 92.50            |
| Other energy Improved heat systems 70.26 34, industries                                               | 70.26                            |   | 34,             | 34,139                                       | -84.95                                        | 13.57                                        | 0.10                                                 | 0.34                             | 85.50 | 75.29              | 35.35            | 70.00                   | 92.50            |
| Other energy CCS - process emissions from 25.32 292,698 industries existing plants (storage offshore) | e) 25.32                         |   | 292,            | 598                                          | 141.09                                        | -17.81                                       | -0.15                                                | 0.35                             | 34.39 | 23.10              | 20.22            | 30.00                   | 17.50            |
| Other energy CCS - process emissions from new 36.14 205. industries plants                            | process emissions from new 36.14 |   | 205,            | 205,956                                      | 29.38                                         | -3.86                                        | -0.03                                                | 0.35                             | 59.65 | 46.30              | 27.54            | 30.00                   | 17.50            |
| Petroleum Improve steam generating boiler 65.78 2, refining                                           | 65.78                            |   | Ъ,              | 2,227                                        | -65.15                                        | 0.00                                         | 0.08                                                 | 0.34                             | 81.02 | 52.72              | 34.12            | 70.00                   | 92.50            |
| Petroleum Improve process heater efficiency 68.24 I, refining                                         | 68.24                            |   | _               | 1,039                                        | -62.99                                        |                                              | 0.08                                                 | 0.34                             | 80.54 | 71.30              | 33.99            | 70.00                   | 92.50            |

| ₽  | Key<br>Sector | Sector    | Subsector             | Measure                                                                           | Score | Total<br>emissions<br>abated<br>(ktCO <sub>2</sub> e) | NPV of<br>costs per<br>ktCO <sub>2</sub> e<br>mitigated | GVA im-<br>pact per<br>ktCO2e<br>mitigated | Jobs created<br>per ktCO <sub>2</sub> e<br>mitigated | Ratio of<br>unskilled<br>to total | Cost  | Economic<br>impact | Social<br>impact | Non-GHG<br>environmental<br>impact | Imple-<br>ment-<br>ability |
|----|---------------|-----------|-----------------------|-----------------------------------------------------------------------------------|-------|-------------------------------------------------------|---------------------------------------------------------|--------------------------------------------|------------------------------------------------------|-----------------------------------|-------|--------------------|------------------|------------------------------------|----------------------------|
| 4  | Energy        | Non-power | Petroleum<br>refining | Waste heat recovery and utilisation                                               | 51.53 | 5,092                                                 | 2.58                                                    | 2.70                                       | 0.01                                                 | 0.14                              | 65.71 | 57.20              | 28.38            | 70.00                              | 40.00                      |
| 15 | Energy        | Non-power | Petroleum<br>refining | Minimise flaring and utilise flare gas as fuel                                    | 49.93 | 1,491                                                 | 40.56                                                   | -4.67                                      | -0.04                                                | 0.36                              | 57.12 | 44.95              | 37.07            | 70.00                              | 40.00                      |
| 9  | Energy        | Non-power | Petroleum<br>refining | Efficient energy production (CCGT and CHP)                                        | 47.23 | 6,843                                                 | 17.05                                                   | -0.90                                      | -0.0                                                 | 0.40                              | 62.44 | 51.21              | 28.97            | 70.00                              | 25.00                      |
| 2  | Energy        | Non-power | Petroleum<br>refining | Waste heat boiler and expander<br>applied to flue gas from the FCC<br>regenerator | 46.64 | 1,767                                                 | 33.08                                                   | 0.11                                       | -0.02                                                | 0.46                              | 58.81 | 52.91              | 28.99            | 70.00                              | 25.00                      |
| 8  | Energy        | Non-power | Petroleum<br>refining | CCS - Existing Refineries                                                         | 30.64 | 22,725                                                | 59.35                                                   | -8.34                                      | -0.07                                                | 0.35                              | 52.88 | 38.84              | I 5.50           | 30.00                              | 17.50                      |
| 61 | Energy        | Non-power | Petroleum<br>refining | Energy monitoring and manage-<br>ment system                                      | 68.82 | 3,018                                                 | -68.89                                                  | 11.96                                      | 0.08                                                 | 0.34                              | 81.87 | 72.60              | 34.37            | 70.00                              | 92.50                      |
| 20 | Energy        | Non-power | Petroleum<br>refining | Improved process control                                                          | 65.69 | 3,018                                                 | -35.49                                                  | 8.15                                       | 0.05                                                 | 0.32                              | 74.32 | 66.28              | 32.27            | 70.00                              | 92.50                      |
| 21 | Energy        | Non-power | Petroleum<br>refining | Improved heat exchanger efficien-<br>cies                                         | 63.22 | 2,376                                                 | -10.46                                                  | 5.13                                       | 0.02                                                 | 0.28                              | 68.66 | 61.24              | 30.33            | 70.00                              | 92.50                      |
| 22 | Energy        | Non-power | Petroleum<br>refining | Improved electric motor system<br>controls and VSDs                               | 62.40 | I ,648                                                | -2.50                                                   | 4.22                                       | 0.02                                                 | 0.23                              | 66.86 | 59.74              | 29.50            | 70.00                              | 92.50                      |
| 23 | Energy        | Non-power | Petroleum<br>refining | Energy-efficient utility systems                                                  | 64.85 | 1,099                                                 | -27.06                                                  | 7.10                                       | 0.04                                                 | 0.31                              | 72.41 | 64.53              | 31.62            | 70.00                              | 92.50                      |
| 24 | Energy        | Non-power | Petroleum<br>refining | CCS - New Refineries                                                              | 35.17 | 21,654                                                | 38.50                                                   | -5.31                                      | -0.04                                                | 0.35                              | 57.59 | 43.89              | 26.90            | 30.00                              | 17.50                      |
| 25 | Energy        | Non-power | Coal mining           | Coal mine methane recovery and<br>utilisation for power and/or heat<br>generation | 47.58 | 7,505                                                 | 0.37                                                    | 0.63                                       | 0.00                                                 | 0.16                              | 66.21 | 53.76              | 28.12            | 50.00                              | 42.50                      |
| 26 | Energy        | Non-power | Coal mining           | Coal mine methane recovery and destruction by flaring                             | 53.74 | 7,704                                                 | 3.95                                                    | -0.5                                       | -0.00                                                | 0.35                              | 65.40 | 51.86              | 19.24            | 70.00                              | 67.50                      |

С | | З

| lmple-<br>ment-<br>ability                              | 67.50                                                                           | 100.00                                                             | 25.00                                                                            | 25.00                                                                             | 100.00                                          | 100.00                    | 00.001                                             | 00.001                                                          | 85.00                         | 52.50                   | 85.00                   | 67.50                   | 50.00                        | 67.50                   |
|---------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------|---------------------------|----------------------------------------------------|-----------------------------------------------------------------|-------------------------------|-------------------------|-------------------------|-------------------------|------------------------------|-------------------------|
|                                                         | 50.00                                                                           | 70.00                                                              | 45.00                                                                            | 30.00                                                                             | 70.00                                           | 70.00                     | 70.00                                              | 70.00                                                           | 85.00                         | 65.00                   | 95.00                   | 90.00                   | 85.00                        | 100.00                  |
| Non-GHG<br>environmental<br>impact                      | Ŀ                                                                               | 2                                                                  | 4                                                                                | m                                                                                 |                                                 | 2                         | 2                                                  | 2                                                               | ω                             | 9                       | 6                       | 6                       | æ                            | 10                      |
| Social<br>impact                                        | 35.45                                                                           | 29.32                                                              | 48.69                                                                            | 59.03                                                                             | 35.53                                           | 35.05                     | 33.72                                              | 35.39                                                           | 31.86                         | 29.01                   | 40.32                   | 28.19                   | 46.78                        | 44.93                   |
| Economic<br>impact                                      | 39.02                                                                           | 70.19                                                              | 49.99                                                                            | 51.24                                                                             | 75.70                                           | 74.16                     | 69.91                                              | 75.28                                                           | 69.92                         | 50.77                   | 24.85                   | 48.19                   | 43.78                        | 37.75                   |
| Cost                                                    | 52.24                                                                           | 60.38                                                              | 63.79                                                                            | 64.97                                                                             | 86.18                                           | 84.51                     | 79.98                                              | 85.71                                                           | 71.91                         | 64.38                   | 34.25                   | 61.22                   | 55.98                        | 49.26                   |
| Ratio of<br>unskilled<br>to total                       | 0.35                                                                            | 3.89                                                               | 0.35                                                                             | 0.35                                                                              | 0.34                                            | 0.34                      | 0.34                                               | 0.34                                                            | 0.29                          | 0.36                    | 0.36                    | 0.36                    | 0.36                         | 0.36                    |
| Jobs created<br>per ktCO <sub>2</sub> e<br>mitigated    | -0.07                                                                           | -0.00                                                              | -0.01                                                                            | -0.01                                                                             | 0.10                                            | 60:0                      | 0.07                                               | 0.10                                                            | 0.05                          | -0.01                   | -0.15                   | -0.02                   | -0.05                        | -0.08                   |
| GVA im-<br>pact per<br>ktCO <sub>2</sub> e<br>mitigated | -8.24                                                                           | 10.51                                                              | -1.64                                                                            | -0.89                                                                             | 13.82                                           | 12.89                     | 10.34                                              | 13.56                                                           | 10.34                         | -1.17                   | -16.76                  | -2.72                   | -5.37                        | -9.00                   |
| NPV of<br>costs per<br>ktCO <sub>2</sub> e<br>mitigated | 62.14                                                                           | 26.15                                                              | 11.08                                                                            | 5.85                                                                              | -87.96                                          | -80.58                    | -60.54                                             | -85.90                                                          | -24.86                        | 8.47                    | 141.73                  | 22.46                   | 45.63                        | 75.36                   |
| Total<br>emissions<br>abated<br>(ktCO <sub>2</sub> e)   | 276                                                                             | 3,433                                                              | 4,679                                                                            | 6,347                                                                             | 2,478                                           | 496                       | 116,6                                              | 4,956                                                           | 7,929                         | 2,052,714               | 359,763                 | 1,485,869               | 228,033                      | 1,018,444               |
| Score                                                   | 48.81                                                                           | 63.75                                                              | 47.11                                                                            | 47.03                                                                             | 71.95                                           | 71.23                     | 69.28                                              | 71.75                                                           | 67.12                         | 51.85                   | 56.18                   | 58.42                   | 56.73                        | 60.22                   |
| Measure                                                 | Use of 1st generation biodiesel<br>(BS) for transport and handling<br>equipment | Improve energy efficiency of mine<br>haul and transport operations | Use of 2nd generation biodiesel<br>(B50) for transport and handling<br>equipment | Use of 2nd generation biodiesel<br>(B100) for transport and handling<br>equipment | Process, demand & energy manage-<br>ment system | Energy efficient lighting | Install energy-efficient electric<br>motor systems | Optimise existing electric motor<br>systems (controls and VSDs) | Onsite clean power generation | Nuclear (PWR)           | Gas CCGT                | Onshore wind            | Solar CSP (Parabolic trough) | Solar PV (Concentrated) |
| Subsector                                               | Coal mining                                                                     | Coal mining                                                        | Coal mining                                                                      | Coal mining                                                                       | Coal mining                                     | Coal mining               | Coal mining                                        | Coal mining                                                     | Coal mining                   | Electricity and heating | Electricity and heating | Electricity and heating | Electricity and heating      | Electricity and         |
| Sector                                                  | Non-power                                                                       | Non-power                                                          | Non-power                                                                        | Non-power                                                                         | Non-power                                       | Non-power                 | Non-power                                          | Non-power                                                       | Non-power                     | Power                   | Power                   | Power                   | Power                        | Power                   |
| Key<br>Sector                                           | Energy                                                                          | Energy                                                             | Energy                                                                           | Energy                                                                            | Energy                                          | Energy                    | Energy                                             | Energy                                                          | Energy                        | Energy                  | Energy                  | Energy                  | Energy                       | Energy                  |
| ₽                                                       | 27                                                                              | 28                                                                 | 29                                                                               | 30                                                                                | 31                                              | 32                        | 33                                                 | 34                                                              | 35                            | 36                      | 37                      | 38                      | 39                           | 40                      |

| Key<br>Sector     | Sector | Subsector                         | Measure                                                                | Score | Total<br>emissions<br>abated<br>(ktCO <sub>2</sub> e) | NPV of<br>costs per<br>ktCO <sub>2</sub> e<br>mitigated | GVA im-<br>pact per<br>ktCO <sub>2</sub> e<br>mitigated | Jobs created<br>per ktCO <sub>2</sub> e<br>mitigated | Ratio of<br>unskilled<br>to total | Cost  | Economic<br>impact | Social<br>impact | Non-GHG<br>environmental<br>impact | lmple-<br>ment-<br>ability |
|-------------------|--------|-----------------------------------|------------------------------------------------------------------------|-------|-------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------|-----------------------------------|-------|--------------------|------------------|------------------------------------|----------------------------|
| <br>Energy        | Power  | Electricity and heating           | Import (Hydro)                                                         | 58.34 | 202,632                                               | 23.52                                                   | -2.83                                                   | -0.02                                                | 0.37                              | 60.97 | 48.01              | 28.20            | 90.06                              | 67.50                      |
| <br>Energy        | Power  | Electricity and<br>heating        | Coal CCS                                                               | 38.74 | 1,092,115                                             | 9.17                                                    | - . 7                                                   | -0.0                                                 | 0.36                              | 64.22 | 50.78              | 18.91            | 45.00                              | 17.50                      |
| <br>Energy        | Power  | Electricity and heating           | Biomass                                                                | 63.18 | 204,122                                               | 36.74                                                   | -4.41                                                   | -0.04                                                | 0.36                              | 57.99 | 45.39              | 47.22            | 80.00                              | 85.00                      |
| <br>Energy        | Power  | Electricity and<br>heating        | LFG                                                                    | 45.48 | 53,202                                                | 26.43                                                   | -3.15                                                   | -0.03                                                | 0.36                              | 60.32 | 47.48              | 27.86            | 70.00                              | 22.50                      |
| <br>Energy        | Power  | Electricity and<br>heating        | Energy from waste                                                      | 37.13 | 108,951                                               | 114.04                                                  | -13.90                                                  | -0.12                                                | 0.36                              | 40.5  | 29.60              | 22.46            | 70.00                              | 22.50                      |
| <br>Indus-<br>try | Metals | Primary alumin-<br>ium production | Best process selection for primary aluminium smelting                  | 64.47 | 25,859                                                | -56.58                                                  | 9.27                                                    | 0.07                                                 | 0.34                              | 79.09 | 68.13              | 33.40            | 70.00                              | 77.50                      |
| Indus-<br>try     | Metals | Primary alumin-<br>ium production | Switch to secondary production<br>and increase recycling               | 62.26 | 121,585                                               | -26.90                                                  | 4.28                                                    | 0.03                                                 | 0.34                              | 72.37 | 59.83              | 31.29            | 75.00                              | 77.50                      |
| Indus-<br>try     | Metals | Primary alumin-<br>ium production | Energy monitoring & management<br>system                               | 66.65 | 2,378                                                 | -47.84                                                  | 8.83                                                    | 0.06                                                 | 0.33                              | 77.11 | 67.41              | 32.92            | 70.00                              | 92.50                      |
| Indus-<br>try     | Metals | Primary alumin-<br>ium production | Improved process control                                               | 67.26 | 9,510                                                 | -54.19                                                  | 9.60                                                    | 0.07                                                 | 0.34                              | 78.55 | 68.68              | 33.33            | 70.00                              | 92.50                      |
| Indus-<br>try     | Metals | Primary alumin-<br>ium production | Improved electric motor system<br>controls and variable speed drives   | 62.93 | 7,133                                                 | -9.72                                                   | 4.23                                                    | 0.02                                                 | 0.28                              | 68.49 | 59.76              | 30.17            | 70.00                              | 92.50                      |
| Indus-<br>try     | Metals | Primary alumin-<br>ium production | Energy-efficient utility systems                                       | 61.03 | 2,378                                                 | 15.69                                                   | 1.17                                                    | -0.01                                                | 0.58                              | 62.75 | 54.66              | 30.71            | 70.00                              | 92.50                      |
| Indus-<br>try     | Metals | Ferroalloys pro-<br>duction       | Implementing best available pro-<br>duction techniques                 | 58.37 | 115,087                                               | -26.10                                                  | 4.92                                                    | 0.03                                                 | 0.33                              | 72.19 | 60.90              | 31.31            | 55.00                              | 77.50                      |
| Indus-<br>try     | Metals | Ferroalloys pro-<br>duction       | Replace submerged arc furnace<br>semi-closed with closed type          | 53.90 | 91,739                                                | - 11.13                                                 | 4.41                                                    | 0.02                                                 | 0.29                              | 68.81 | 60.05              | 30.27            | 55.00                              | 60.00                      |
| Indus-<br>try     | Metals | Ferroalloys pro-<br>duction       | Waste gas recovery and power<br>generation - CO from closed<br>furnace | 58.18 | 132,764                                               | -25.89                                                  | 5.49                                                    | 0.03                                                 | 0.33                              | 72.15 | 61.84              | 31.35            | 70.00                              | 60.00                      |

||5

|                     | ar ment-<br>ability                 | 00 60.00                                                                                  | 00 42.50                                                                                          | 0 7.50                                           | 0 92.50                                      | 92.50                                                                | 0 92.50                          | 92.50                                     | 0 42.50                         | 0 42.50                           | 0 77.50                                                    | 00.09 00                     | 0 7.50                                        |   | 0 7.50                                     |
|---------------------|-------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------|----------------------------------|-------------------------------------------|---------------------------------|-----------------------------------|------------------------------------------------------------|------------------------------|-----------------------------------------------|---|--------------------------------------------|
| Non-GHG             | environmenta                        | 55.00                                                                                     | 65.00                                                                                             | 35.00                                            | 70.00                                        | 70.00                                                                | 70.00                            | 70.00                                     | 55.00                           | 70.00                             | 45.00                                                      | 35.00                        | 30.00                                         |   | 35.00                                      |
| Social              | impact                              | 14.11                                                                                     | 12.66                                                                                             | 27.42                                            | 35.43                                        | 29.21                                                                | 31.47                            | 24.35                                     | 38.80                           | 36.12                             | 30.22                                                      | 25.80                        | 28.56                                         |   | 27.98                                      |
| Economic            | impact                              | 6.30                                                                                      | 1.64                                                                                              | 47.52                                            | 75.73                                        | 58.19                                                                | 63.22                            | 72.67                                     | 90.10                           | 78.68                             | 56.29                                                      | 42.19                        | 49.72                                         |   | 47.66                                      |
| t.C.                | COSt                                | 8.30                                                                                      | 3.07                                                                                              | 61.70                                            | 85.68                                        | 66.60                                                                | 72.24                            | 81.74                                     | 95.76                           | 87.76                             | 68.95                                                      | 51.53                        | 63.08                                         |   | 61.29                                      |
| Ratio of            | to total                            | 0.37                                                                                      | 0.37                                                                                              | 0.26                                             | 0.34                                         | 0.22                                                                 | 0.32                             | 0.34                                      | 0.34                            | 0.34                              | 0.34                                                       | 0.37                         | 0.35                                          |   | 0.35                                       |
| Jobs created        | per kt.O2 <sup>e</sup><br>mitigated | -0.26                                                                                     | -0.28                                                                                             | -0.02                                            | 0.10                                         | 10:01                                                                | 0.04                             | 0.08                                      | 0.16                            | 0.11                              | 10.01                                                      | -0.06                        | -0.02                                         |   | -0.02                                      |
| GVA im-<br>pact per | ktCO <sub>2</sub> e<br>mitigated    | -27.91                                                                                    | -30.7                                                                                             | -3,13                                            | 13.84                                        | 3.29                                                                 | 6.31                             | 12.00                                     | 22.48                           | 15.61                             | 2.15                                                       | -6.33                        | -1.80                                         |   | -3.04                                      |
| NPV of<br>costs per | ktCO <sub>2</sub> e<br>mitigated    | 256.52                                                                                    | 279.64                                                                                            | 20.32                                            | -85.73                                       | - 1.35                                                               | -26.31                           | -68.33                                    | -130.35                         | -94.93                            | -11.75                                                     | 65.31                        | 14.21                                         |   | 22.15                                      |
| Total<br>emissions  | abated<br>(ktCO <sub>2</sub> e)     | 31,408                                                                                    | 31,408                                                                                            | 99,174                                           | 14,947                                       | 7,473                                                                | 7,473                            | 7,473                                     | 5,902                           | 3,584                             | 169,738                                                    | 94,670                       | 75,109                                        |   | 74,121                                     |
|                     | alooc                               | 28.58                                                                                     | 25.05                                                                                             | 35.85                                            | 70.39                                        | 62.05                                                                | 64.59                            | 66.39                                     | 63.03                           | 61.94                             | 54.72                                                      | 42.35                        | 35.75                                         |   | 35.91                                      |
| M                   | riedsure                            | Waste heat recovery and power<br>generation from semi-closed fur-<br>nace - Rankine cycle | Waste heat recovery and power<br>generation from semi-closed fur-<br>nace - organic Rankine cycle | Use biocarbon reductants instead<br>of coal/coke | Energy monitoring and manage-<br>ment system | Improved electric motor system<br>controls and variable speed drives | Energy-efficient utility systems | Improved heat exchanger efficien-<br>cies | BOF waste heat and gas recovery | Top gas pressure recovery turbine | Electric arc furnaces (EAF) and secondary production route | State-of-the-art power plant | Top gas-recycling blast furnace<br>(with CCS) |   | CCS - blast furnace (post-com-<br>histion) |
| C. Hoove            | Subsector                           | Ferroalloys pro-<br>duction                                                               | Ferroalloys pro-<br>duction                                                                       | Ferroalloys pro-<br>duction                      | Ferroalloys pro-<br>duction                  | Ferroalloys pro-<br>duction                                          | Ferroalloys pro-<br>duction      | Ferroalloys pro-<br>duction               | Iron and steel<br>production    | Iron and steel<br>production      | Iron and steel<br>Production                               | Iron and steel<br>production | Iron and steel<br>production                  | _ | Iron and steel                             |
| Contor              | Sector                              | Metals                                                                                    | Metals                                                                                            | Metals                                           | Metals                                       | Metals                                                               | Metals                           | Metals                                    | Metals                          | Metals                            | Metals                                                     | Metals                       | Metals                                        |   | Metals                                     |
| Key                 | Sector                              | Indus-<br>try                                                                             | Indus-<br>try                                                                                     | Indus-<br>try                                    | Indus-<br>try                                | Indus-<br>try                                                        | Indus-<br>try                    | Indus-<br>try                             | Indus-<br>try                   | Indus-<br>try                     | Indus-<br>try                                              | Indus-<br>try                | Indus-<br>try                                 |   | Indus-<br>trv                              |
| ⋸                   | Ē                                   | 55                                                                                        | 56                                                                                                | 57                                               | 58                                           | 59                                                                   | 60                               | 61                                        | 62                              | 63                                | 64                                                         | 65                           | 66                                            |   | 67                                         |

||6

| ě ¥           | Key<br>Sector | Sector   | Subsector                    | Measure                                                              | Score | Total<br>emissions<br>abated<br>(ktCO2e) | NPV of<br>costs per<br>ktCO <sub>2</sub> e<br>mitigated | GVA im-<br>pact per<br>ktCO <sub>2</sub> e<br>mitigated | Jobs created<br>per ktCO2e<br>mitigated | Ratio of<br>unskilled<br>to total | Cost  | Economic<br>impact | Social<br>impact | Non-GHG<br>environmental<br>impact | lmple-<br>ment-<br>ability |
|---------------|---------------|----------|------------------------------|----------------------------------------------------------------------|-------|------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-----------------------------------------|-----------------------------------|-------|--------------------|------------------|------------------------------------|----------------------------|
| Indus-<br>try |               | Metals   | Iron and steel<br>production | DRI - Midrex                                                         | 43.03 | 57,962                                   | 43.97                                                   | -4.98                                                   | -0.05                                   | 0.36                              | 56.35 | 44.43              | 26.85            | 30.00                              | 60.00                      |
| Indus-<br>try |               | Metals   | Iron and steel<br>production | DRI - HYL                                                            | 40.02 | 54,181                                   | 40.28                                                   | -4,64                                                   | -0.04                                   | 0.36                              | 57.19 | 45.00              | 27.06            | 30.00                              | 42.50                      |
| Indus-<br>try |               | Metals   | Iron and steel<br>production | DRI - ULCORED                                                        | 41.02 | 54,969                                   | 22.42                                                   | -2.66                                                   | -0.02                                   | 0.36                              | 61.22 | 48.29              | 28.13            | 60.00                              | 7.50                       |
| Indus-<br>try |               | Metals   | Iron and steel<br>production | Energy monitoring and manage-<br>ment system                         | 63.71 | 4,469                                    | -20.52                                                  | 4.39                                                    | 0.03                                    | 0.33                              | 70.93 | 60.02              | 30.92            | 70.00                              | 92.50                      |
| Indus-<br>try |               | Metals   | Iron and steel<br>production | Improved process control                                             | 61.53 | 22,343                                   | 0.06                                                    | 1.88                                                    | 0.01                                    | 0.20                              | 66.28 | 55.84              | 28.72            | 70.00                              | 92.50                      |
| Indus-<br>try |               | Metals   | Iron and steel<br>production | Improved electric motor system<br>controls and variable speed drives | 67.69 | 5,362                                    | -46.31                                                  | 13.14                                                   | 0.07                                    | 0.31                              | 76.76 | 74.58              | 33.43            | 70.00                              | 92.50                      |
| Indus-<br>try |               | Metals   | Iron and steel<br>production | Energy efficient boiler systems and kilns                            | 63.66 | 8,937                                    | 13.79                                                   | 0.21                                                    | 10.0-                                   | 0.46                              | 63.18 | 53.06              | 29.70            | 85.00                              | 92.50                      |
| Indus-<br>try |               | Metals   | Iron and steel<br>production | Energy-efficient utility systems                                     | 67.69 | 3,575                                    | -46.31                                                  | 13.14                                                   | 0.07                                    | 0.31                              | 76.76 | 74.58              | 33.43            | 70.00                              | 92.50                      |
| Indus-<br>try |               | Metals   | Iron and steel<br>production | Improved heat exchanger efficien-<br>cies                            | 63.04 | 8,937                                    | -13.66                                                  | 3.55                                                    | 0.02                                    | 0.32                              | 69.38 | 58.63              | 30.40            | 70.00                              | 92.50                      |
| Indus-<br>try |               | Minerals | Cement pro-<br>duction       | Improved process control                                             | 59.26 | 9,242                                    | 29.42                                                   | -1.08                                                   | -0.02                                   | 0.41                              | 59.64 | 50.92              | 28.51            | 70.00                              | 92.50                      |
| Indus-<br>try |               | Minerals | Cement pro-<br>duction       | Reduction of clinker content of<br>cement products                   | 61.16 | 80,694                                   | -0.08                                                   | 0.43                                                    | 00.00                                   | 0.21                              | 66.31 | 53.44              | 28.54            | 70.00                              | 92.50                      |
| Indus-<br>try |               | Minerals | Cement pro-<br>duction       | Waste heat recovery from kilns and coolers/cogeneration              | 47.41 | 6,155                                    | 50.17                                                   | -4.70                                                   | -0.05                                   | 0.37                              | 54.95 | 44.90              | 26.73            | 70.00                              | 42.50                      |
| Indus-<br>try |               | Minerals | Cement pro-<br>duction       | Utilise waste material as fuel                                       | 51.85 | 32,373                                   | 5.36                                                    | -0.64                                                   | 10.0-                                   | 0.36                              | 65.08 | 51.65              | 29.18            | 80.00                              | 35.00                      |
| Indus-<br>try |               | Minerals | Cement pro-<br>duction       | Geopolymer cement production                                         | 41.25 | 7,146                                    | 26.00                                                   | -3.11                                                   | -0.03                                   | 0.36                              | 60.41 | 47.54              | 27.90            | 70.00                              | 0.00                       |
| Indus-<br>try |               | Minerals | Cement pro-<br>duction       | CCS - back-end chemical absorp-<br>tion                              | 35.03 | 56,864                                   | 57.06                                                   | -7.44                                                   | -0.06                                   | 0.35                              | 53.39 | 40.35              | 15.73            | 50.00                              | 17.50                      |
| Indus-<br>try |               | Minerals | Cement pro-<br>duction       | CCS - oxyfuelling                                                    | 35.65 | 28,432                                   | 50.75                                                   | -6.61                                                   | -0.06                                   | 0.35                              | 54.82 | 41.73              | 16.14            | 50.00                              | 17.50                      |
|               |               |          |                              |                                                                      |       |                                          |                                                         |                                                         |                                         |                                   |       |                    |                  |                                    |                            |

| Imple-<br>al ment-<br>ability                           | 92.50                                        | 92.50                                                                | 92.50                            | 00 50.00                         | 00 67.50                                         | 00.09 00                                          | 00.00                   | 92.50                                        | 92.50                    | 92.50                                               | 92.50                            | 92.50                                     | 00 50.00                                                   | 00 17.50                                           |           |
|---------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------|----------------------------------|----------------------------------|--------------------------------------------------|---------------------------------------------------|-------------------------|----------------------------------------------|--------------------------|-----------------------------------------------------|----------------------------------|-------------------------------------------|------------------------------------------------------------|----------------------------------------------------|-----------|
| Non-GHG<br>environmental<br>impact                      | 70.00                                        | 70.00                                                                | 70.00                            | 70.00                            | 75.00                                            | 55.00                                             | 35.00                   | 70.00                                        | 70.00                    | 70.00                                               | 70.00                            | 70.00                                     | 00.06                                                      | 50.00                                              |           |
| Social<br>impact                                        | 30.84                                        | 27.76                                                                | 28.36                            | 31.01                            | 26.74                                            | 28.23                                             | 28.15                   | 32.11                                        | 30.93                    | 31.48                                               | 31.02                            | 31.58                                     | 28.66                                                      | 30.32                                              |           |
| Economic<br>impact                                      | 60.50                                        | 57.13                                                                | 50.58                            | 59.94                            | 44.79                                            | 48.27                                             | 48.34                   | 63.95                                        | 60.23                    | 63.44                                               | 62.20                            | 62.09                                     | 50.11                                                      | 55.84                                              |           |
| Cost                                                    | 70.52                                        | 66.51                                                                | 59.23                            | 71.21                            | 55.07                                            | 62.40                                             | 61.79                   | 74.65                                        | 70.87                    | 72.12                                               | 70.72                            | 72.97                                     | 63.47                                                      | 69.01                                              |           |
| Ratio of<br>unskilled<br>to total                       | 0.32                                         | 0.04                                                                 | 0.41                             | 0.33                             | 0.37                                             | 0.35                                              | 0.35                    | 0.33                                         | 0.32                     | 0.31                                                | 0.30                             | 0.33                                      | 0.35                                                       | 0.30                                               |           |
| Jobs created<br>per ktCO <sub>2</sub> e<br>mitigated    | 0.03                                         | 10.0                                                                 | -0.03                            | 0.03                             | -0.05                                            | -0.02                                             | -0.02                   | 0.05                                         | 0.03                     | 0.04                                                | 0.03                             | 0.04                                      | -0.0                                                       | 0.02                                               |           |
| GVA im-<br>pact per<br>ktCO <sub>2</sub> e<br>mitigated | 4.68                                         | 2.65                                                                 | -1.28                            | 4.34                             | -4.77                                            | -2.68                                             | -2.63                   | 6.75                                         | 4.52                     | 6.45                                                | 5.70                             | 5.64                                      | -1.57                                                      | I.88                                               |           |
| NPV of<br>costs per<br>ktCO <sub>2</sub> e<br>mitigated | -18.71                                       | -0.98                                                                | 31.22                            | -21.76                           | 49.66                                            | 17.22                                             | 19.93                   | -36.98                                       | -20.24                   | -25.79                                              | -19.57                           | -29.55                                    | 12.48                                                      | - 1 2.00                                           |           |
| Total<br>emissions<br>abated<br>(ktCO2e)                | 1,848                                        | 4,524                                                                | 2,513                            | 10,348                           | 9,173                                            | 14,645                                            | 37,106                  | 431                                          | 760                      | 341                                                 | 273                              | 506                                       | 9,979                                                      | 31,782                                             |           |
| Score                                                   | 63.67                                        | 61.53                                                                | 59.09                            | 55.71                            | 53.18                                            | 50.29                                             | 34.74                   | 65.40                                        | 63.73                    | 64.60                                               | 63.99                            | 64.63                                     | 55.99                                                      | 44.29                                              |           |
| Measure                                                 | Energy monitoring and manage-<br>ment system | Improved electric motor system<br>controls and variable speed drives | Energy-efficient utility systems | Installation of shaft preheaters | Replace rotary kilns with vertical kilns or PFRK | Use alternative fuels including waste and biomass | CCS for lime production | Energy monitoring and manage-<br>ment system | Improved process control | Improved electric motor system<br>controls and VSDs | Energy-efficient utility systems | Improved heat exchanger efficien-<br>cies | CCS for new ammonia production<br>plants process emissions | Revamp: increase capacity and<br>energy efficiency |           |
| Subsector                                               | Cement pro-<br>duction                       | Cement pro-<br>duction                                               | Cement pro-<br>duction           | Lime produc-<br>tion             | Lime produc-<br>tion                             | Lime produc-<br>tion                              | Lime produc-<br>tion    | Lime produc-<br>tion                         | Lime produc-<br>tion     | Lime produc-<br>tion                                | Lime produc-<br>tion             | Lime produc-<br>tion                      | Chemicals<br>production                                    | Chemicals<br>production                            | Chamicale |
| Sector                                                  | Minerals                                     | Minerals                                                             | Minerals                         | Minerals                         | Minerals                                         | Minerals                                          | Minerals                | Minerals                                     | Minerals                 | Minerals                                            | Minerals                         | Minerals                                  | Chemicals<br>production                                    | Chemicals<br>production                            | Chamicale |
| Key<br>Sector                                           | Indus-<br>try                                | Indus-<br>try                                                        | Indus-<br>try                    | Indus-<br>try                    | Indus-<br>try                                    | Indus-<br>try                                     | Indus-<br>try           | Indus-<br>try                                | Indus-<br>try            | Indus-<br>try                                       | Indus-<br>try                    | Indus-<br>try                             | Indus-<br>try                                              | Indus-<br>try                                      | 1         |
| ₽                                                       | 85                                           | 86                                                                   | 87                               | 88                               | 89                                               | 06                                                | 16                      | 92                                           | 93                       | 94                                                  | 95                               | 96                                        | 97                                                         | 98                                                 |           |

8 | |

1 | 9

| Cost Economic Social Non-GHG Imple-<br>impact impact impact ability |
|---------------------------------------------------------------------|
| _                                                                   |
| 34 78.80 67.24 33.26                                                |
|                                                                     |
| 0.06 0.34                                                           |
| 8.73                                                                |
| -55.31<br>81.18                                                     |
| 167,519<br>268,030                                                  |
| 68.52<br>56.49                                                      |
| Optimise existing electric motor systems (controls and VSDs)        |
| Surface and<br>underground<br>s                                     |
|                                                                     |
|                                                                     |
| ==3                                                                 |

| ₽   | Key<br>Sector  | Sector    | Subsector                    | Measure                                                     | Score | Total<br>emissions<br>abated<br>(ktCO <sub>2</sub> e) | NPV of<br>costs per<br>ktCO2e<br>mitigated | GVA im-<br>pact per<br>ktCO <sub>2</sub> e<br>mitigated | Jobs created<br>per ktCO <sub>2</sub> e<br>mitigated | Ratio of<br>unskilled<br>to total | Cost    | Economic<br>impact | Social<br>impact | Non-GHG<br>environmental<br>impact | lmple-<br>ment-<br>ability |
|-----|----------------|-----------|------------------------------|-------------------------------------------------------------|-------|-------------------------------------------------------|--------------------------------------------|---------------------------------------------------------|------------------------------------------------------|-----------------------------------|---------|--------------------|------------------|------------------------------------|----------------------------|
| 126 | Indus-<br>try  | Buildings | Residential                  | Improved insulation - existing<br>buildings                 | 68.41 | 33,955                                                | -13.75                                     | 5.53                                                    | 0.03                                                 | 0.28                              | 69.40   | 61.91              | 50.86            | 70.00                              | 92.50                      |
| 127 | Indus-<br>try  | Buildings | Residential                  | Efficient lighting - FLs                                    | 77.16 | 328,381                                               | -147.31                                    | 23.02                                                   | 0.17                                                 | 0.34                              | 09.66   | 00'16              | 39.63            | 65.00                              | 100.00                     |
| 128 | Indus-<br>try  | Buildings | Residential                  | Efficient lighting - LEDs                                   | 73.34 | 13,155                                                | -110.84                                    | 17.35                                                   | 0.13                                                 | 0.34                              | 91.35   | 81.57              | 37.11            | 65.00                              | 100.00                     |
| 129 | Indus-<br>try  | Buildings | Residential                  | Solar water heating                                         | 76.10 | 74,941                                                | -95.51                                     | 14.96                                                   | 0.11                                                 | 0.34                              | 87.89   | 77.60              | 56.05            | 70.00                              | 92.50                      |
| 130 | Indus-<br>try  | Buildings | Residential                  | LPG for cooking                                             | 62.22 | 32,001                                                | 0.39                                       | -0.05                                                   | -0.00                                                | 0.36                              | 66.21   | 52.63              | 39.48            | 70.00                              | 85.00                      |
| 131 | Indus-<br>try  | Buildings | Residential                  | Passive building/improved thermal<br>design - new buildings | 70.75 | 89,355                                                | -98.53                                     | 15.62                                                   | 0.12                                                 | 0.34                              | 88.57   | 78.69              | 46.30            | 70.00                              | 75.00                      |
| 132 | Indus-<br>try  | Buildings | Commercial/<br>institutional | Efficient lighting                                          | 73.71 | 57,750                                                | -114.46                                    | 17.89                                                   | 0.13                                                 | 0.34                              | 92.17   | 82.46              | 37.35            | 65.00                              | 100.00                     |
| 133 | Indus-<br>try  | Buildings | Commercial/<br>institutional | Heat pumps - existing buildings                             | 66.99 | 16,739                                                | -62.06                                     | 10.46                                                   | 0.07                                                 | 0.34                              | 80.33   | 70.12              | 33.85            | 65.00                              | 92.50                      |
| 134 | Indus-<br>try  | Buildings | Commercial/<br>institutional | Heat pumps - new buildings                                  | 68.33 | 19,443                                                | -65.54                                     | 10.90                                                   | 0.08                                                 | 0.34                              | 81.11   | 70.84              | 34.07            | 70.00                              | 92.50                      |
| 135 | Indus-<br>try  | Buildings | Commercial/<br>institutional | HVAC: with heat recovery - new buildings                    | 76.98 | 60,808                                                | - 1 49.08                                  | 23.52                                                   | 0.17                                                 | 0.34                              | 1 00.00 | 91.84              | 39.79            | 70.00                              | 92.50                      |
| 136 | Indus-<br>try  | Buildings | Commercial/<br>institutional | HVAC: variable speed drives - exist-<br>ing buildings       | 72.15 | 38,181                                                | -102.72                                    | 16.41                                                   | 0.12                                                 | 0.34                              | 89.52   | 80.01              | 36.60            | 70.00                              | 92.50                      |
| 137 | Indus-<br>try  | Buildings | Commercial/<br>institutional | HVAC: variable speed drives - new buildings                 | 72.35 | 46,362                                                | -104.79                                    | 16.67                                                   | 0.12                                                 | 0.34                              | 89.98   | 80.44              | 36.74            | 70.00                              | 92.50                      |
| 138 | Indus-<br>try  | Buildings | Commercial/<br>institutional | HVAC: Central air conditioners -<br>new buildings           | 70.55 | 13,840                                                | -86.17                                     | 14.33                                                   | 0.10                                                 | 0.34                              | 85.78   | 76.55              | 35.54            | 70.00                              | 92.50                      |
| 139 | Indus-<br>try  | Buildings | Commercial/<br>institutional | Energy efficient appliances                                 | 73.04 | 12,466                                                | -111.93                                    | 17.56                                                   | 0.13                                                 | 0.34                              | 91.60   | 81.92              | 37.19            | 70.00                              | 92.50                      |
| 140 | Indus-<br>try  | Buildings | Commercial/<br>institutional | Passive building/improved thermal<br>design - new buildings | 76.04 | 166,497                                               | - 148.60                                   | 23.55                                                   | 0.17                                                 | 0.34                              | 99.89   | 91.88              | 49.78            | 70.00                              | 75.00                      |
| 4   | Trans-<br>port | Road      | Road                         | Road - alternative fuels - CNG                              | 62.36 | 92,297                                                | -10.81                                     | 1.29                                                    | 0.01                                                 | 0.35                              | 68.74   | 54.86              | 50.18            | 70.00                              | 67.50                      |

| Sector           | 10 | Subsector                | Measure                                                     | Score | Total<br>emissions<br>abated | NPV of<br>costs per<br>ktCO <sub>,e</sub> | GVA im-<br>pact per<br>ktCO <sub>,e</sub> | Jobs created<br>per ktCO <sub>2</sub> e | Ratio of<br>unskilled | Cost  | Economic<br>impact | Social<br>impact | Non-GHG<br>environmental | Imple-<br>ment- |
|------------------|----|--------------------------|-------------------------------------------------------------|-------|------------------------------|-------------------------------------------|-------------------------------------------|-----------------------------------------|-----------------------|-------|--------------------|------------------|--------------------------|-----------------|
|                  |    |                          |                                                             |       | (ktCO <sub>2</sub> e)        | mitigated                                 | mitigated                                 | mitigated                               | to total              |       | -                  | -                | impact                   | ability         |
| Road PHEV        |    | Roa<br>PHE               | Road - alternative fuels - diesel<br>PHEV                   | 50.38 | 14,164                       | 9.11                                      | -1.74                                     | -0.0                                    | 0.41                  | 64.23 | 49.83              | 39.42            | 65.00                    | 32.50           |
| Road Roa         |    | Roa<br>ICE               | Road - improved efficiency - petrol<br>ICE                  | 68.05 | 504,410                      | -69.07                                    | 8.84                                      | 0.08                                    | 0.35                  | 16.18 | 67.42              | 34.15            | 70.00                    | 92.50           |
| Road Road HEV    |    | Road<br>HEV              | Road - alternative fuels - petrol<br>HEV                    | 60.20 | 104,746                      | 26.58                                     | -3.27                                     | -0.03                                   | 0.37                  | 60.28 | 47.28              | 38.07            | 65.00                    | 92.50           |
| Road Road        |    | Road                     | Road - improved efficiency - diesel<br>ICE                  | 63.65 | 432,845                      | -24.27                                    | 3.05                                      | 0.03                                    | 0.34                  | 71.78 | 57.80              | 31.14            | 70.00                    | 92.50           |
| Road PHEV        |    | Roac<br>PHE <sup>V</sup> | Road - alternative fuels - petrol<br>PHEV                   | 51.99 | 26,422                       | -8.59                                     | 0.67                                      | 0.01                                    | 0.31                  | 68.24 | 53.82              | 39.95            | 65.00                    | 32.50           |
| Road             |    | Road                     | Road - alternative fuels - FCEV                             | 42.46 | 6,118                        | 37.81                                     | -5.50                                     | -0.04                                   | 0.36                  | 57.74 | 43.56              | 37.09            | 40.00                    | 32.50           |
| Road Road HEV    |    | Road<br>HEV              | Road - alternative fuels - Diesel<br>HEV                    | 58.15 | 63,581                       | 47.09                                     | -6.01                                     | -0.05                                   | 0.36                  | 55.65 | 42.72              | 36.64            | 65.00                    | 92.50           |
| Road             |    | Road                     | Road - alternative fuels - EV                               | 54.80 | 8,886                        | -21.88                                    | 1.34                                      | 0.02                                    | 0.35                  | 71.24 | 54.95              | 50.92            | 45.00                    | 50.00           |
| Road cars to     |    | Road -<br>cars to        | Road - shifting passengers from<br>cars to public transport | 65.86 | 153,850                      | 65.20                                     | -6.81                                     | -0.06                                   | 0.38                  | 51.55 | 41.39              | 56.18            | 1 00.00                  | 77.50           |
| Road to rail     |    | Road<br>to rail          | Road - shifting freight from road<br>to rail                | 72.14 | 87,159                       | -23.51                                    | 1.88                                      | 0.01                                    | 0.48                  | 71.61 | 55.84              | 61.25            | 85.00                    | 85.00           |
| Road             |    | Road                     | Road - biofuels                                             | 50.65 | 396,964                      | 33.36                                     | -4.08                                     | -0.04                                   | 0.36                  | 58.75 | 45.93              | 37.43            | 35.00                    | 77.50           |
| Rail -           |    | Rail -                   | Rail - improved efficiency - EMUs                           | 77.19 | 2,435                        | -163.99                                   | 28.43                                     | 0.29                                    | 0.35                  | 88.90 | 100.00             | 46.53            | 70.00                    | 92.50           |
| Rail Rail .      |    | Rail -                   | Rail - improved efficiency - diesel                         | 62.96 | 6,349                        | -16.76                                    | 2.32                                      | 0.02                                    | 0.33                  | 70.08 | 56.57              | 30.61            | 70.00                    | 92.50           |
| Rail Rail diesel |    | Rail<br>dies             | Rail - alternative fuels - hybrid<br>diesel                 | 65.43 | I,886                        | 34.64                                     | -4.79                                     | -0.03                                   | 0.40                  | 58.46 | 44.75              | 38.09            | 95.00                    | 92.50           |
| Rail Rail .      |    | Rail -                   | Rail - alternative fuels - CNG                              | 54.51 | 366                          | 33.23                                     | -5.84                                     | -0.04                                   | 0.34                  | 58.78 | 43.00              | 37.08            | 90.06                    | 42.50           |

| ₽   | Key<br>Sector  | Sector                   | Subsector                | Measure                         | Score | Total<br>emissions<br>abated<br>(ktCO2e) | NPV of<br>costs per<br>ktCO <sub>2</sub> e<br>mitigated | GVA im-<br>pact per<br>ktCO <sub>2</sub> e<br>mitigated | Jobs created<br>per ktCO <sub>2</sub> e<br>mitigated | Ratio of<br>unskilled<br>to total | Cost  | Economic<br>impact | Social<br>impact | Non-GHG<br>environmental<br>impact | lmple-<br>ment-<br>ability |
|-----|----------------|--------------------------|--------------------------|---------------------------------|-------|------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------|-----------------------------------|-------|--------------------|------------------|------------------------------------|----------------------------|
| 157 | Trans-<br>port | Rail                     | Rail                     | Rail - biofuels                 | 51.83 | 4,626                                    | 39.54                                                   | -6.43                                                   | -0.0                                                 | I.33                              | 57.35 | 42.03              | 45.94            | 35.00                              | 77.50                      |
| 158 | Trans-<br>port | Aviation                 | Aviation                 | Aviation - biofuels             | 48.84 | 20,733                                   | 52.89                                                   | -6.28                                                   | -0.06                                                | 0.36                              | 54.34 | 42.27              | 36.25            | 35.00                              | 77.50                      |
| 159 | Waste          | Municipal<br>solid waste | Municipal solid<br>waste | LFG recovery and generation     | 60.63 | 292,263                                  | -0.98                                                   | 0.21                                                    | 0.02                                                 | -0.51                             | 66.52 | 53.07              | 38.23            | 70.00                              | 77.50                      |
| 160 | Waste          | Municipal<br>solid waste | Municipal solid<br>waste | LFG recovery and flaring        | 63.45 | 56,446                                   | 5.36                                                    | -0.72                                                   | 0.06                                                 | -0.45                             | 65.08 | 51.53              | 40.39            | 70.00                              | 92.50                      |
| 161 | Waste          | Municipal<br>solid waste | Municipal solid<br>waste | Paper recycling                 | 69.01 | 164,273                                  | 37.34                                                   | -3.91                                                   | 0.38                                                 | 0.80                              | 57.85 | 46.21              | 65.26            | 80.00                              | 92.50                      |
| 162 | Waste          | Municipal<br>solid waste | Municipal solid<br>waste | Energy from waste               | 38.66 | 83,312                                   | 164.70                                                  | - 1 6.69                                                | 0.07                                                 | -1.40                             | 29.06 | 24.96              | 30.87            | 65.00                              | 42.50                      |
| 163 | Waste          | Municipal<br>solid waste | Municipal solid<br>waste | Home composting                 | 69.04 | 4,579                                    | -55.41                                                  | 8.69                                                    | -0.06                                                | 1.06                              | 78.82 | 67.12              | 24.74            | 90.00                              | 92.50                      |
| 164 | Waste          | Municipal<br>solid waste | Municipal solid<br>waste | Windrow composting              | 54.34 | 11,932                                   | 1 20.35                                                 | -13.74                                                  | 2.35                                                 | 0.77                              | 39.08 | 29.86              | 63.95            | 65.00                              | 67.50                      |
| 165 | Waste          | Municipal<br>solid waste | Municipal solid<br>waste | In-vessel composting            | 61.09 | 36,163                                   | 105.61                                                  | -12.21                                                  | 1.21                                                 | 0.79                              | 42.42 | 32.42              | 72.08            | 1 00.00                            | 50.00                      |
| 166 | Waste          | Municipal<br>solid waste | Municipal solid<br>waste | Anaerobic digestion             | 49.15 | 45,867                                   | 157.42                                                  | -18.19                                                  | 0.47                                                 | 16.0                              | 30.70 | 22.47              | 71.64            | 85.00                              | 25.00                      |
| 167 | AFO-<br>LU     | AFOLU                    | AFOLU                    | Expanding plantations           | 46.12 | 81,011                                   | -1.84                                                   | 3.09                                                    | 0.02                                                 | 0.34                              | 66.71 | 57.86              | 20.64            | 15.00                              | 77.50                      |
| 168 | AFO-<br>LU     | AFOLU                    | AFOLU                    | Biochar addition to cropland    | 59.28 | 44,727                                   | 12.46                                                   | -0.29                                                   | 0.00                                                 | 1.37                              | 63.48 | 52.23              | 36.94            | 95.00                              | 50.00                      |
| 169 | AFO-<br>LU     | AFOLU                    | AFOLU                    | Treatment of livestock waste    | 61.24 | 19,359                                   | 45.16                                                   | -2.11                                                   | 1.12                                                 | 0.71                              | 56.08 | 49.21              | 61.35            | 60.00                              | 77.50                      |
| 170 | AFO-<br>LU     | AFOLU                    | AFOLU                    | Rural tree planting (thickets)  | 71.16 | 57,050                                   | 3.03                                                    | -0.33                                                   | 0.24                                                 | 0.73                              | 65.61 | 52.17              | 56.72            | 95.00                              | 85.00                      |
| 171 | AFO-<br>LU     | AFOLU                    | AFOLU                    | Urban tree planting             | 75.77 | 20,229                                   | 11.56                                                   | -1.25                                                   | 0.35                                                 | 0.76                              | 63.68 | 50.63              | 83.46            | 75.00                              | 100.00                     |
| 172 | AFO-<br>LU     | AFOLU                    | AFOLU                    | Restoration of mesic grasslands | 53.27 | 14,694                                   | 293.22                                                  | -31.70                                                  | 3.32                                                 | 0.76                              | 00.0  | 00.00              | 75.51            | 95.00                              | 85.00                      |

Table 34: Overall weighted score and ranking of all measures for the balanced weighting, cost and implementability, and social and environmental pathways

|      |        |           |                         |                                                                                |                    |           | (                         |         | -                           |       |
|------|--------|-----------|-------------------------|--------------------------------------------------------------------------------|--------------------|-----------|---------------------------|---------|-----------------------------|-------|
|      | Key    |           |                         |                                                                                | Balanced weighting | veighting | Cost and implementability | ability | social and<br>environmental | ental |
| ltem | sector | Sector    | Subsector               | Measure                                                                        | Score              | Rank      | Score                     | Rank    | Score                       | Rank  |
| _    | Energy | Non-power | Other energy industries | Increase onsite gas-fired power generation - using internal combustion engines | 67.81              | 37        | 75.77                     | 40      | 61.83                       | 38    |
| 2    | Energy | Non-power | Other energy industries | Waste heat recovery power generation                                           | 53.24              | 121       | 53.82                     | 128     | 53.66                       | 116   |
| m    | Energy | Non-power | Other energy industries | Waste gas recovery and utilisation                                             | 50.69              | 131       | 51.85                     | 135     | 51.51                       | 122   |
| 4    | Energy | Non-power | Other energy industries | CCS - process emissions from existing plants (storage onshore)                 | 31.50              | 168       | 33.86                     | 168     | 29.30                       | 170   |
| ß    | Energy | Non-power | Other energy industries | Energy monitoring and management system                                        | 64.94              | 55        | 73.75                     | 48      | 58.50                       | 73    |
| 9    | Energy | Non-power | Other energy industries | Improved process control                                                       | 64.90              | 56        | 73.64                     | 49      | 58.49                       | 74    |
| 7    | Energy | Non-power | Other energy industries | Improved electric motor system controls and VSDs                               | 68.36              | -<br>S    | 77.68                     | 25      | 60.90                       | 45    |
| ω    | Energy | Non-power | Other energy industries | Energy efficient utility systems                                               | 67.92              | 36        | 77.14                     | 32      | 60.60                       | 52    |
| 6    | Energy | Non-power | Other energy industries | Improved heat systems                                                          | 70.26              | 23        | 80.01                     | 8       | 62.20                       | 37    |
| 0    | Energy | Non-power | Other energy industries | CCS - process emissions from existing plants (storage offshore)                | 25.32              | 171       | 26.34                     | 171     | 25.08                       | 172   |
| Ξ    | Energy | Non-power | Other energy industries | CCS - process emissions from new plants                                        | 36.14              | 159       | 39.49                     | 155     | 32.48                       | 165   |
| 12   | Energy | Non-power | Petroleum refining      | Improve steam generating boiler efficiency                                     | 65.78              | 48        | 75.84                     | 39      | 59.07                       | 61    |
| 13   | Energy | Non-power | Petroleum refining      | Improve process heater efficiency                                              | 68.24              | 33        | 77.49                     | 27      | 60.83                       | 48    |
| 4    | Energy | Non-power | Petroleum refining      | Waste heat recovery and utilization                                            | 51.53              | 129       | 53.84                     | 127     | 50.72                       | 127   |
| 15   | Energy | Non-power | Petroleum refining      | Minimise flaring and utilise flare gas as fuel                                 | 49.93              | 135       | 50.05                     | 139     | 51.68                       | 121   |
| 16   | Energy | Non-power | Petroleum refining      | Efficient energy production (CCGT and CHP)                                     | 47.23              | 142       | 47.49                     | 145     | 48.51                       | 132   |
| 17   | Energy | Non-power | Petroleum refining      | Waste heat boiler and expander applied to flue gas from the FCC regenerator    | 46.64              | 146       | 46.22                     | 148     | 48.32                       | 133   |
| 8    | Energy | Non-power | Petroleum refining      | CCS - Existing Refineries                                                      | 30.64              | 169       | 34.83                     | 167     | 26.85                       | 171   |
| 61   | Energy | Non-power | Petroleum refining      | Energy monitoring and management system                                        | 68.82              | 27        | 78.19                     | 22      | 61.23                       | 4     |
| 20   | Energy | Non-power | Petroleum refining      | Improved process control                                                       | 65.69              | 50        | 74.33                     | 44      | 59.10                       | 60    |
| 21   | Energy | Non-power | Petroleum refining      | Improved heat exchanger efficiencies                                           | 63.22              | 76        | 71.37                     | 71      | 57.35                       | 95    |
| 22   | Energy | Non-power | Petroleum refining      | Improved electric motor system controls and VSDs                               | 62.40              | 83        | 70.42                     | 76      | 56.74                       | 101   |
| 23   | Energy | Non-power | Petroleum refining      | Energy-efficient utility systems                                               | 64.85              | 58        | 73.33                     | 51      | 58.51                       | 72    |
| 24   | Energy | Non-power | Petroleum refining      | CCS - New Refineries                                                           | 35.17              | 164       | 38.36                     | 157     | 31.81                       | 167   |
| 25   | Energy | Non-power | Coal mining             | Coal mine methane recovery and utilisation for power and/or heat generation    | 47.58              | 139       | 52.42                     | 133     | 43.59                       | 146   |
| 26   | Energy | Non-power | Coal mining             | Coal mine methane recovery and destruction by flaring                          | 53.74              | 119       | 60.52                     | 107     | 49.71                       | 129   |
| 27   | Energy | Non-power | Coal mining             | Use of 1st generation biodiesel (B5) for transport and handling equipment      | 48.81              | 138       | 53.59                     | 129     | 45.78                       | 142   |

|        |               |           |                              |                                                                             | Balanced weighting | veighting | Cost and   | р<br>-          | Social and | ۔<br>بے |
|--------|---------------|-----------|------------------------------|-----------------------------------------------------------------------------|--------------------|-----------|------------|-----------------|------------|---------|
| lt em  | Key<br>sector | Sactor    | Subsector                    | Mastirra                                                                    | Score              | Rank      | Score Rank | ability<br>Rank | Score Rar  | Rank    |
| 28     | Energy        | Non-power | Coal mining                  | Improve energy efficiency of mine haul and transport operations             | 63.75              | 89        | 71.10      | 74              | 57.82      | 86      |
| 29     | Energy        | Non-power | Coal mining                  | Use of 2nd generation biodiesel (B50) for transport and handling equipment  | 47.11              | 144       | 47.38      | 146             | 46.67      | 138     |
| 30     | Energy        | Non-power | Coal mining                  | Use of 2nd generation biodiesel (B100) for transport and handling equipment | 47.03              | 145       | 47.52      | 144             | 45.28      | 144     |
| -<br>S | Energy        | Non-power | Coal mining                  | Process, demand & energy management system                                  | 71.95              | 4         | 82.59      | 0               | 63.12      | 28      |
| 32     | Energy        | Non-power | Coal mining                  | Energy efficient lighting                                                   | 71.23              | 16        | 81.73      | 4               | 62.63      | 33      |
| 33     | Energy        | Non-power | Coal mining                  | Install energy-efficient electric motor systems                             | 69.28              | 24        | 79.36      | 61              | 61.29      | 40      |
| 34     | Energy        | Non-power | Coal mining                  | Optimise existing electric motor systems (controls and VSDs)                | 71.75              | 15        | 82.35      | 12              | 62.99      | 30      |
| 35     | Energy        | Non-power | Coal mining                  | Onsite clean power generation                                               | 67.12              | 4         | 72.94      | 56              | 63.58      | 23      |
| 36     | Energy        | Power     | Electricity and heating      | Nuclear (PVVR)                                                              | 51.85              | 127       | 55.98      | 124             | 49.67      | 130     |
| 37     | Energy        | Power     | Electricity and heating      | Gas CCGT                                                                    | 56.18              | Ξ         | 55.22      | 125             | 61.77      | 39      |
| 38     | Energy        | Power     | Electricity and heating      | Onshore wind                                                                | 58.42              | 104       | 61.38      | 105             | 59.06      | 62      |
| 39     | Energy        | Power     | Electricity and heating      | Solar CSP (Parabolic trough)                                                | 56.73              | 109       | 54.95      | 126             | 61.10      | 43      |
| 40     | Energy        | Power     | Electricity and heating      | Solar PV (Concentrated)                                                     | 60.22              | 98        | 58.22      | 116             | 66.17      | 4       |
| 4      | Energy        | Power     | Electricity and heating      | Import (Hydro)                                                              | 58.34              | 106       | 61.26      | 901             | 59.02      | 64      |
| 42     | Energy        | Power     | Electricity and heating      | Coal CCS                                                                    | 38.74              | 156       | 42.41      | 153             | 35.62      | 156     |
| 43     | Energy        | Power     | Electricity and heating      | Biomass                                                                     | 63.18              | 77        | 65.96      | 97              | 63.37      | 26      |
| 44     | Energy        | Power     | Electricity and heating      | LFG                                                                         | 45.48              | 148       | 45.41      | 150             | 47.28      | 136     |
| 45     | Energy        | Power     | Electricity and heating      | Energy from Waste                                                           | 37.13              | 158       | 35.16      | 166             | 41.62      | 152     |
| 46     | Industry      | Metals    | Primary aluminium production | Best process selection for primary aluminium smelting                       | 64.47              | 64        | 72.04      | 67              | 58.66      | 71      |
| 47     | Industry      | Metals    | Primary aluminium production | Switch to secondary production and increase recycling                       | 62.26              | 85        | 68.81      | 88              | 58.17      | 8       |
| 48     | Industry      | Metals    | Primary aluminium production | Energy monitoring & management system                                       | 66.65              | 45        | 75.63      | 4               | 59.72      | 57      |
| 49     | Industry      | Metals    | Primary aluminium production | Improved process control                                                    | 67.26              | 40        | 76.37      | 36              | 60.14      | 56      |
| 50     | Industry      | Metals    | Primary aluminium production | Improved electric motor system controls and variable speed drives           | 62.93              | 81        | 71.14      | 73              | 57.13      | 98      |
| 51     | Industry      | Metals    | Primary aluminium production | Energy-efficient utility systems                                            | 61.03              | 95        | 68.39      | 89              | 56.24      | 103     |
| 52     | Industry      | Metals    | Ferroalloys production       | Implementing best available production techniques                           | 58.37              | 105       | 66.85      | 92              | 51.27      | 124     |
| 53     | Industry      | Metals    | Ferroalloys production       | Replace submerged arc furnace semi-closed with closed type                  | 53.90              | 118       | 60.06      | 108             | 48.73      | 131     |
| 54     | Industry      | Metals    | Ferroalloys production       | Waste gas recovery and power generation - CO from closed furnace            | 58.18              | 107       | 63.18      | 102             | 54.87      | 112     |

|      | 2             |          |                           |                                                                                              | Balanced weighting | veighting | Cost and implementability | ind<br>tability | Social and | nd   |
|------|---------------|----------|---------------------------|----------------------------------------------------------------------------------------------|--------------------|-----------|---------------------------|-----------------|------------|------|
| ltem | Rey<br>sector | Sector   | Subsector                 | Measure                                                                                      | Score              | Rank      | Score                     | Rank            | Score      | Rank |
| 55   | Industry      | Metals   | Ferroalloys production    | Waste heat recovery and power generation from semi-closed furnace -<br>Rankine Cycle         | 28.58              | 170       | 28.86                     | 170             | 31.65      | 168  |
| 56   | Industry      | Metals   | Ferroalloys production    | Waste heat recovery and power generation from semi-closed furnace -<br>Organic Rankine Cycle | 25.05              | 172       | 21.91                     | 172             | 31.90      | 166  |
| 57   | Industry      | Metals   | Ferroalloys production    | Use biocarbon reductants instead of coal/coke                                                | 35.85              | 161       | 37.92                     | 160             | 33.52      | 161  |
| 58   | Industry      | Metals   | Ferroalloys production    | Energy monitoring and management system                                                      | 70.39              | 22        | 80.14                     | 17              | 62.29      | 36   |
| 59   | Industry      | Metals   | Ferroalloys production    | Improved electric motor system controls and variable speed drives                            | 62.05              | 87        | 70.13                     | 77              | 56.45      | 102  |
| 60   | Industry      | Metals   | Ferroalloys production    | Energy-efficient utility systems                                                             | 64.59              | 62        | 73.12                     | 53              | 58.31      | 78   |
| 19   | Industry      | Metals   | Ferroalloys production    | Improved heat exchanger efficiencies                                                         | 66.39              | 46        | 77.15                     | 31              | 57.72      | 88   |
| 62   | Industry      | Metals   | Iron and steel production | BOF waste heat and gas recovery                                                              | 63.03              | 79        | 69.45                     | 84              | 55.67      | 109  |
| 63   | Industry      | Metals   | Iron and steel production | Top gas pressure recovery turbine                                                            | 61.94              | 88        | 66.33                     | 95              | 58.04      | 83   |
| 64   | Industry      | Metals   | Iron and steel production | Electric Arc Furnaces (EAF) and secondary production route                                   | 54.72              | 115       | 63.98                     | 001             | 46.60      | 139  |
| 65   | Industry      | Metals   | Iron and steel production | State-of-the-Art Power Plant                                                                 | 42.35              | 152       | 48.91                     | 140             | 36.65      | 154  |
| 66   | Industry      | Metals   | Iron and steel production | Top gas-recycling blast furnace (with CCS)                                                   | 35.75              | 162       | 38.31                     | 158             | 32.52      | 164  |
| 67   | Industry      | Metals   | Iron and steel production | CCS - blast furnace (post-combustion)                                                        | 35.91              | 160       | 37.83                     | 161             | 33.69      | 160  |
| 68   | Industry      | Metals   | Iron and steel production | State-of-the-art power plant (with CCS)                                                      | 31.82              | 167       | 32.84                     | 169             | 30.91      | 169  |
| 69   | Industry      | Metals   | Iron and steel production | DRI – Midrex process                                                                         | 43.03              | 150       | 50.67                     | 138             | 35.98      | 155  |
| 70   | Industry      | Metals   | Iron and steel production | DRI – HYL process                                                                            | 40.02              | 155       | 45.83                     | 149             | 34.44      | 158  |
| 71   | Industry      | Metals   | Iron and steel production | DRI – ULCORED process                                                                        | 41.02              | 154       | 40.38                     | 154             | 42.55      | 149  |
| 72   | Industry      | Metals   | Iron and steel production | Energy monitoring and management system                                                      | 63.71              | 70        | 72.22                     | 63              | 57.67      | 90   |
| 73   | Industry      | Metals   | Iron and steel production | Improved process control                                                                     | 61.53              | 60        | 69.72                     | 82              | 56.01      | 105  |
| 74   | Industry      | Metals   | Iron and steel production | Improved electric motor system controls and variable speed drives                            | 67.69              | 39        | 76.26                     | 37              | 60.58      | 54   |
| 75   | Industry      | Metals   | Iron and steel production | Energy efficient boiler systems and kilns                                                    | 63.66              | 72        | 69.80                     | 8               | 61.02      | 44   |
| 76   | Industry      | Metals   | Iron and steel production | Energy-efficient utility systems                                                             | 67.69              | 38        | 76.26                     | 37              | 60.58      | 53   |
| 77   | Industry      | Metals   | Iron and steel production | Improved heat exchanger efficiencies                                                         | 63.04              | 78        | 71.41                     | 70              | 57.19      | 97   |
| 78   | Industry      | Minerals | Cement production         | Improved process control                                                                     | 59.26              | 101       | 66.55                     | 93              | 54.79      | 113  |
| 79   | Industry      | Minerals | Cement production         | Reduction of clinker content of cement products                                              | 61.16              | 92        | 69.47                     | 83              | 55.72      | 108  |
| 80   | Industry      | Minerals | Cement production         | Waste heat recovery from kilns and coolers/cogeneration                                      | 47.41              | 140       | 48.89                     | 141             | 48.09      | 134  |
| 8    | Industry      | Minerals | Cement production         | Utilise waste material as fuel                                                               | 51.85              | 126       | 52.62                     | 132             | 53.39      | 118  |

| teemsectorSector82IndustryMin83IndustryMin84IndustryMin85IndustryMin86IndustryMin87IndustryMin88IndustryMin89IndustryMin90IndustryMin91IndustryMin92IndustryMin93IndustryMin94IndustryMin95IndustryMin96IndustryMin97IndustryMin98IndustryMin94IndustryMin95IndustryMin96IndustryMin97IndustryChe98IndustryChe99IndustryChe99IndustryChe99IndustryChe99IndustryChe99IndustryChe99IndustryChe99IndustryChe99IndustryChe99IndustryChe99IndustryChe                                                                                                                                                                                                                                                                                          |                         |                      |                                                                   | Balanced weighting | eighting | Cost and<br>implementability | nd<br>tability | Social and<br>environmental | nd<br>ental |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------|-------------------------------------------------------------------|--------------------|----------|------------------------------|----------------|-----------------------------|-------------|
| Industry       Industry | Sector                  | Subsector            | Measure                                                           | Score              | Rank     | Score                        | Rank           | Score                       | Rank        |
| Industry                | Minerals                | Cement production    | Geopolymer cement production                                      | 41.25              | 153      | 38.71                        | 156            | 45.06                       | 145         |
| Industry                                                             | Minerals                | Cement production    | CCS - back-end chemical absorption                                | 35.03              | 165      | 37.21                        | 1 63           | 34.13                       | 159         |
| Industry                                                                                                                                                       | Minerals                | Cement production    | CCS - oxyfuelling                                                 | 35.65              | 163      | 37.96                        | 159            | 34.55                       | 157         |
| Industry                                                                                                                                                                                                    | Minerals                | Cement production    | Energy monitoring and management system                           | 63.67              | 71       | 72.09                        | 66             | 57.65                       | 16          |
| Industry                                                                                                                                                                                                                                                                               | Minerals                | Cement production    | Improved electric motor system controls and variable speed drives | 61.53              | 89       | 69.84                        | 80             | 55.83                       | 106         |
| Industry                                                                                                                                                                                                                                                                                                                                                          | Minerals                | Cement production    | Energy-efficient utility systems                                  | 59.09              | 102      | 66.34                        | 94             | 54.66                       | 114         |
| Industry                                                                                                                                                                                                                                                                                                                                                                                        | Minerals                | Lime production      | Installation of shaft preheaters                                  | 55.71              | 113      | 59.58                        | 011            | 53.47                       | 117         |
| Industry<br>Industry<br>Industry<br>Industry<br>Industry<br>Industry<br>Industry<br>Industry<br>Industry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Minerals                | Lime production      | Replace rotary kilns with vertical kilns or PFRK                  | 53.18              | 123      | 56.93                        | 120            | 52.34                       | 119         |
| Industry<br>Industry<br>Industry<br>Industry<br>Industry<br>Industry<br>Industry<br>Industry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Minerals                | Lime production      | Use alternative fuels including waste and biomass                 | 50.29              | 134      | 56.11                        | 123            | 46.20                       | 140         |
| Industry<br>Industry<br>Industry<br>Industry<br>Industry<br>Industry<br>Industry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Minerals                | Lime production      | CCS for lime production                                           | 34.74              | 166      | 35.86                        | 165            | 33.12                       | 162         |
| Industry<br>Industry<br>Industry<br>Industry<br>Industry<br>Industry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Minerals                | Lime production      | Energy monitoring and management system                           | 65.40              | 53       | 74.22                        | 45             | 58.85                       | 67          |
| Industry<br>Industry<br>Industry<br>Industry<br>Industry<br>Industry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Minerals                | Lime production      | Improved process control                                          | 63.73              | 69       | 72.21                        | 64             | 57.69                       | 89          |
| Industry<br>Industry<br>Industry<br>Industry<br>Industry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Minerals                | Lime production      | Improved electric motor system controls and VSDs                  | 64.60              | 61       | 73.09                        | 54             | 58.32                       | 77          |
| Industry<br>Industry<br>Industry<br>Industry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Minerals                | Lime production      | Energy-efficient utility systems                                  | 63.99              | 66       | 72.36                        | 60             | 57.90                       | 84          |
| Industry<br>Industry<br>Industry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Minerals                | Lime production      | Improved heat exchanger efficiencies                              | 64.63              | 60       | 73.31                        | 52             | 58.31                       | 79          |
| Industry<br>Industry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Chemicals<br>production | Chemicals production | CCS for new ammonia production plants process emissions           | 55.99              | 112      | 57.27                        | 611            | 57.89                       | 85          |
| Industry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Chemicals<br>production | Chemicals production | Revamp: increase capacity and energy efficiency                   | 44.29              | 149      | 46.47                        | 147            | 42.35                       | 150         |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Chemicals<br>production | Chemicals production | N2O abatement for new production plants                           | 61.04              | 94       | 69.18                        | 85             | 55.82                       | 107         |
| 100 Industry Che                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Chemicals<br>production | Chemicals production | Energy monitoring and management system                           | 58.47              | 103      | 62.82                        | 103            | 55.39                       | 011         |
| 101 Industry Che                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Chemicals<br>production | Chemicals production | Advanced process control                                          | 64.85              | 59       | 73.49                        | 50             | 58.48                       | 76          |
| 102 Industry Che                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Chemicals<br>production | Chemicals production | Improved electric motor system controls and VSDs                  | 65.22              | 54       | 73.96                        | 46             | 58.73                       | 69          |
| 103 Industry Che                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Chemicals<br>production | Chemicals production | Energy efficient utility systems                                  | 63.34              | 75       | 71.69                        | 68             | 57.42                       | 94          |

|        | Key      |                         |                                |                                                                                 | Balanced weighting | ighting | Cost and<br>implementability | nd<br>ability | Social and<br>environmental | nd<br>ental |
|--------|----------|-------------------------|--------------------------------|---------------------------------------------------------------------------------|--------------------|---------|------------------------------|---------------|-----------------------------|-------------|
| ltem   | sector   | Sector                  | Subsector                      | Measure                                                                         | Score              | Rank    | Score                        | Rank          | Score                       | Rank        |
| 104    | Industry | Chemicals<br>production | Chemicals production           | Increase process integration and improved heat systems                          | 64.53              | 63      | 72.59                        | 59            | 58.49                       | 75          |
| 105    | Industry | Chemicals<br>production | Chemicals production           | Combined heat and power (CHP)                                                   | 53.19              | 122     | 57.46                        | 8             | 51.36                       | 123         |
| 901    | Industry | Mining                  | Surface and underground mining | Use of 1st generation biodiesel (B5) for transport and handling equipment       | 51.26              | 130     | 56.60                        | 121           | 47.44                       | 135         |
| 107    | Industry | Mining                  | Surface and underground mining | Improve energy efficiency of mine haul and transport operations                 | 64.86              | 57      | 72.97                        | 55            | 58.26                       | 80          |
| 108    | Industry | Mining                  | Surface and underground mining | Use of 2nd generation biodiesel (B50) for transport and handling equipment      | 47.38              | 4       | 47.71                        | 142           | 46.85                       | 137         |
| 601    | Industry | Mining                  | Surface and underground mining | Use of 2nd generation biodiesel (B100) for transport and handling equipment     | 47.13              | 143     | 47.63                        | 143           | 45.35                       | 143         |
| 011    | Industry | Mining                  | Surface and underground mining | Process, demand & energy management system                                      | 68.65              | 28      | 78.73                        | 20            | 60.84                       | 47          |
| Ξ      | Industry | Mining                  | Surface and underground mining | Energy efficient lighting                                                       | 68.18              | 34      | 78.16                        | 23            | 60.51                       | 55          |
| 112    | Industry | Mining                  | Surface and underground mining | Install energy-efficient electric motor systems                                 | 66.91              | 44      | 76.62                        | 34            | 59.64                       | 58          |
| с<br>П | Industry | Mining                  | Surface and underground mining | Optimise existing electric motor systems (controls and VSDs)                    | 68.52              | 29      | 78.57                        | 21            | 60.75                       | 50          |
| 41     | Industry | Mining                  | Surface and underground mining | Onsite clean power generation                                                   | 56.49              | 011     | 60.00                        | 601           | 57.28                       | 96          |
| 115    | Industry | Other                   | Pulp and paper production      | Convert fuel from coal to biomass/residual wood waste                           | 65.60              | 51      | 71.28                        | 72            | 63.42                       | 25          |
| 116    | Industry | Other                   | Pulp and paper production      | Application of co-generation of heat and power (CHP)                            | 52.29              | 124     | 57.51                        | 117           | 50.23                       | 128         |
| 117    | Industry | Other                   | Pulp and paper production      | Energy recovery system                                                          | 67.05              | 42      | 72.74                        | 58            | 64.47                       | 19          |
| 811    | Industry | Other                   | Pulp and paper production      | Energy monitoring and management system                                         | 65.70              | 49      | 74.56                        | 42            | 59.05                       | 63          |
| 611    | Industry | Other                   | Pulp and paper production      | Energy efficient electric motors, improved controls and variable speed drives   | 63.83              | 67      | 72.29                        | 62            | 57.76                       | 87          |
| 120    | Industry | Other                   | Pulp and paper production      | Energy-efficient utility systems (e.g. lighting, refrigeration, compressed air) | 60.68              | 96      | 68.90                        | 87            | 55.18                       | =           |
| 121    | Industry | Other                   | Pulp and paper production      | Improved process control                                                        | 62.66              | 82      | 70.91                        | 75            | 56.93                       | 001         |
| 122    | Industry | Other                   | Pulp and paper production      | Energy efficient boiler systems and kilns and Improved heat systems             | 64.33              | 65      | 72.90                        | 57            | 58.12                       | 82          |
| 123    | Industry | Buildings               | Residential                    | Energy efficient appliances                                                     | 77.94              | _       | 87.25                        | M             | 69.35                       | 8           |
| 124    | Industry | Buildings               | Residential                    | Geyser Blankets                                                                 | 70.86              | 61      | 80.75                        | 15            | 62.60                       | 34          |
| 125    | Industry | Buildings               | Residential                    | Improved Insulation - New Buildings                                             | 71.20              | 17      | 77.22                        | 30            | 66.60                       | 13          |
| 126    | Industry | Buildings               | Residential                    | Improved Insulation - Existing Buildings                                        | 68.41              | 30      | 73.79                        | 47            | 64.68                       | 8           |
| 127    | Industry | Buildings               | Residential                    | Efficient Lighting - FLs                                                        | 77.16              | Ω       | 89.40                        | _             | 65.68                       | 16          |
| 128    | Industry | Buildings               | Residential                    | Efficient Lighting - LEDs                                                       | 73.34              | 6       | 84.91                        | 9             | 63.03                       | 29          |
| 129    | Industry | Buildings               | Residential                    | Solar water heating                                                             | 76.10              | IJ      | 83.27                        | 6             | 16.69                       | 7           |

|      | Key       |           |                           |                                                          | Balanced weighting | ighting  | Cost and<br>implementability | nd<br>ability | Social and<br>environmental | nd<br>ental |
|------|-----------|-----------|---------------------------|----------------------------------------------------------|--------------------|----------|------------------------------|---------------|-----------------------------|-------------|
| ltem | sector    | Sector    | Subsector                 | Measure                                                  | Score              | Rank     | Score                        | Rank          | Score                       | Rank        |
| 130  | Industry  | Buildings | Residential               | LPG for cooking                                          | 62.22              | 86       | 68.19                        | 96            | 58.70                       | 70          |
| 131  | Industry  | Buildings | Residential               | Passive building/improved thermal design - new buildings | 70.75              | 20       | 77.43                        | 29            | 64.93                       | 17          |
| 132  | Industry  | Buildings | Commercial/ institutional | Efficient Lighting                                       | 73.71              | ω        | 85.35                        | 4             | 63.29                       | 27          |
| 133  | Industry  | Buildings | Commercial/ institutional | Heat pumps - existing buildings                          | 66.99              | 43       | 76.78                        | 33            | 58.89                       | 66          |
| 134  | Industry  | Buildings | Commercial/ institutional | Heat pumps - new buildings                               | 68.33              | 32       | 77.69                        | 24            | 60.87                       | 46          |
| 135  | Industry  | Buildings | Commercial/ institutional | HVAC: with heat recovery - new buildings                 | 76.98              | 4        | 87.91                        | 2             | 66.86                       | 12          |
| 136  | Industry  | Buildings | Commercial/ institutional | HVAC: variable speed drives - existing buildings         | 72.15              | 12       | 82.22                        | <u> </u>      | 63.51                       | 24          |
| 137  | Industry  | Buildings | Commercial/ institutional | HVAC: variable speed drives - new buildings              | 72.35              | =        | 82.46                        | =             | 63.65                       | 22          |
| 138  | Industry  | Buildings | Commercial/ institutional | HVAC: central air conditioners - new buildings           | 70.55              | 21       | 80.27                        | 16            | 62.42                       | 35          |
| 139  | Industry  | Buildings | Commercial/ institutional | Energy efficient appliances                              | 73.04              | 01       | 83.30                        | 8             | 64.12                       | 20          |
| 140  | Industry  | Buildings | Commercial/ institutional | Passive building/improved thermal design - new buildings | 76.04              | 9        | 83.62                        | 7             | 68.60                       | 01          |
| 4    | Transport | Road      | Road                      | Road - alternative fuels - CNG                           | 62.36              | 84       | 65.25                        | 98            | 61.17                       | 42          |
| 142  | Transport | Road      | Road                      | Road - alternative fuels - diesel PHEV                   | 50.38              | 133      | 50.87                        | 137           | 51.20                       | 125         |
| 143  | Transport | Road      | Road                      | Road - improved efficiency - petrol ICE                  | 68.05              | 35       | 77.67                        | 26            | 60.64                       | 5           |
| 144  | Transport | Road      | Road                      | Road - alternative fuels - petrol HEV                    | 60.20              | 66       | 66.90                        | 16            | 56.08                       | 104         |
| 145  | Transport | Road      | Road                      | Road - improved efficiency - diesel ICE                  | 63.65              | 73       | 72.36                        | 61            | 57.61                       | 92          |
| 146  | Transport | Road      | Road                      | Road - alternative fuels - petrol PHEV                   | 51.99              | 125      | 52.92                        | 131           | 52.19                       | 120         |
| 147  | Transport | Road      | Road                      | Road - alternative fuels - FCEV                          | 42.46              | 151      | 44.91                        | 151           | 40.36                       | 153         |
| 148  | Transport | Road      | Road                      | Road - alternative fuels - Diesel HEV                    | 58.15              | 108      | 64.44                        | 66            | 54.66                       | 115         |
| 149  | Transport | Road      | Road                      | Road - alternative fuels - EV                            | 54.80              | 1        | 58.58                        | 114           | 51.19                       | 126         |
| 150  | Transport | Road      | Road                      | Road - shifting passengers from cars to public transport | 65.86              | 47       | 63.63                        | 101           | 71.71                       | 5           |
| 151  | Transport | Road      | Road                      | Road - shifting freight from road to rail                | 72.14              | <u> </u> | 74.35                        | 43            | 72.43                       | 4           |
| 152  | Transport | Road      | Road                      | Road - biofuels                                          | 50.65              | 132      | 58.59                        | 113           | 43.57                       | 147         |
| 153  | Transport | Rail      | Rail                      | Rail - improved efficiency - EMUs                        | 77.19              | 2        | 84.96                        | 5             | 68.92                       | 6           |
| 154  | Transport | Rail      | Rail                      | Rail - improved efficiency - Diesel                      | 62.96              | 80       | 71.50                        | 69            | 57.13                       | 66          |
| 155  | Transport | Rail      | Rail                      | Rail - alternative fuels - Hybrid diesel                 | 65.43              | 52       | 68.92                        | 86            | 66.15                       | 15          |
| 156  | Transport | Rail      | Rail                      | Rail - alternative fuels - CNG                           | 54.5               | 116      | 53.27                        | 130           | 58.91                       | 65          |
| 157  | Transport | Rail      | Rail                      | Rail - biofuels                                          | 51.83              | 128      | 58.49                        | 115           | 46.02                       | 4           |

|      |           |                          |                       |                                 |                    |           | Cost and         | pu       | Social and    | pu    |
|------|-----------|--------------------------|-----------------------|---------------------------------|--------------------|-----------|------------------|----------|---------------|-------|
|      | Key       |                          |                       |                                 | Balanced weighting | veighting | implementability | tability | environmental | ental |
| ltem | sector    | Sector                   | Subsector             | Measure                         | Score              | Rank      | Score            | Rank     | Score         | Rank  |
| 158  | Transport | Aviation                 | Aviation              | Aviation - biofuels             | 48.84              | 137       | 56.34            | 122      | 42.35         | 151   |
| 159  | Waste     | Municipal Solid<br>Waste | Municipal solid waste | LFG recovery and generation     | 60.63              | 76        | 65.99            | 96       | 57.59         | 93    |
| 160  | Waste     | Municipal Solid<br>Waste | Municipal solid waste | LFG recovery and flaring        | 63.45              | 74        | 69.98            | 62       | 59.55         | 59    |
| 161  | Waste     | Municipal Solid<br>Waste | Municipal solid waste | Paper recycling                 | 69.01              | 26        | 70.04            | 78       | 70.50         | 9     |
| 162  | Waste     | Municipal Solid<br>Waste | Municipal solid waste | Energy from waste               | 38.66              | 157       | 36.46            | 164      | 43.21         | 148   |
| 163  | Waste     | Municipal Solid<br>Waste | Municipal solid waste | Home composting                 | 69.04              | 25        | 77.46            | 28       | 64.00         | 21    |
| 164  | Waste     | Municipal Solid<br>Waste | Municipal solid waste | Windrow composting              | 54.34              | 117       | 51.76            | 136      | 58.78         | 68    |
| 165  | Waste     | Municipal Solid<br>Waste | Municipal solid waste | In-vessel composting            | 61.09              | 93        | 52.42            | 134      | 72.71         | M     |
| 166  | Waste     | Municipal Solid<br>Waste | Municipal solid waste | Anaerobic digestion             | 49.15              | 136       | 37.69            | 162      | 62.64         | 32    |
| 167  | AFOLU     | AFOLU                    | AFOLU                 | Expanding plantations           | 46.12              | 147       | 59.28            | Ξ        | 32.68         | 163   |
| I 68 | AFOLU     | AFOLU                    | AFOLU                 | Biochar addition to cropland    | 59.28              | 00        | 58.81            | 112      | 62.75         | м     |
| 169  | AFOLU     | AFOLU                    | AFOLU                 | Treatment of livestock waste    | 61.24              | 16        | 62.74            | 104      | 60.75         | 49    |
| 170  | AFOLU     | AFOLU                    | AFOLU                 | Rural tree planting (thickets)  | 71.16              | 8         | 72.13            | 65       | 73.38         | 2     |
| 171  | AFOLU     | AFOLU                    | AFOLU                 | Urban tree planting             | 75.77              | 7         | 76.38            | 35       | 76.89         | -     |
| 172  | AFOLU     | AFOLU                    | AFOLU                 | Restoration of mesic grasslands | 53.27              | 120       | 42.55            | 152      | 68.18         | Ξ     |

Department of Environmental Affairs Environment House, 473 Steve Biko, Arcadia, Pretoria, 0083 South Africa **www.environment.gov.za** 

Deutsche Gesellschaft fuer Internationale Zusammenarbeit (GIZ) GmbH Hatfield Gardens, Block C, Groundfloor 333 Grosvenor Street Hatfield 0028 Pretoria, South Africa www.giz.de

First publication in 2014 Copyright © 2014 Department of Environmental Affairs (DEA) / GIZ Pretoria, South Africa