

APPROPRIATE TECHNOLOGY FOR ADVANCED WASTE TREATMENT-GUIDELINE

TABLE OF CONTENTS

Appropriate Technology for Advanced Waste Treatment

Conter	nts	ii
1	Introduction	1
1.1	Overview of this document	1
1.2	The management of waste	2
2	Advanced waste treatment: technology concepts	4
3	Advanced waste treatment: technology options	8
3.1	Matching the technology to the waste stream	9
3.2	Classifying the technologies	15
4	Promising technologies - short term	17
4.1	Overview	18
4.2	Open windrow composting	18
4.2.1	An explanation of composting	19
4.2.2	Composting process	19
4.2.3	Windrow composting configurations	21
4.2.4	Preliminary treatment / volume reduction stage	22
4.2.5	Biological treatment stage	22
4.2.6	Process outputs	22
4.2.7	Preparation for market stage	22
4.2.8	Concluding comments	24
4.3	Clean materials recycling facility	25
4.3.1		25
	. Mechanical preparation treatments	26
	Mechanical separation treatments	26
	Mechanical post-treatment	26
	Clean MRF configurations	26
4.3.3	,	27
4.3.4	Material sorting techniques stage	29
4.3.5		30
4.3.6	Process outputs	30
4.3.7	Preparation for market	31
4.3.8	Concluding comments	32
4.4	Dirty materials recycling facility	34
4.4.1	Preliminary treatment / volume/reduction stage	34
4.4.2	Preliminary material sorting stage	34
4.4.3	Secondary material sorting stage	36
4.4.4	Product polishing / quality refining stage	37
4.4.5	Process outputs	37
4.4.6	Preparation for market	38
4.4.7	Concluding comments	38
_		
5	Potential technologies - medium term	39

5.1	Overview	40
5.2	Incineration (with energy recovery)	40
5.2.1	Incineration process	40
5.2.2	Combustion process	40
	Energy recovery process	41
5.2.2	Incineration plant configurations	41
5.2.5	Preliminary treatment / volume reduction stage	42
5.2.6	Mechanical sorting stage	42
	Thermal treatment stage	42
	Emissions control stage	42
	Product polishing / quality refining stage	43
	Process outputs	44
	Preparation for market	44
	Concluding comments	44
5.3	Anaerobic digestion	45
	Anaerobic digestion process	45
5.3.1.2	Anaerobic digestion	46
5.3.1.3	Digestate	47
5.3.1.4	Biogas	47
5.3.2	Anaerobic digestion plant configurations	49
5.3.3	Preliminary treatment / volume reduction stage	50
5.3.4	Biological treatment stage	51
5.3.5	Product polishing / quality refining / further treatment stage	51
5.3.6	Emissions control stage	52
5.3.7	Product outputs	52
	Preparation for market	52
	Concluding comments	53
5.4	In-vessel composting	55
5.4.1	In-vessel composting process	55
	IVC technologies	55
	_	56
	Bio-drying	
5.4.2	In-vessel composting plant configurations	57
5.4.3	Preliminary treatment / volume reduction stage	57
5.4.4	Biological treatment stage	58
5.4.5	Emissions control stage	59
5.4.6	Process outputs	59
5.4.7	Preparation for market	59
5.4.8	Concluding comments	59
5.5	Mechanical biological treatment	60
5.5.1	Preliminary treatment / volume reduction stage	60
5.5.2	Mechanical sorting treatment / biological treatment stage	62
5.5.2.1	Mechanical treatment	62
5.5.2,2	Biological treatment	62
5.5.3	Emissions control stage	63
5.5.4	Product refining / quality control stage	63
5.5.5	Process outputs	64
5.5.6	Preparation for market	64
5.5.7	Concluding comments	65
2.3.7		03

6	Potential technologies - long term	66
6.1	Overview	67
6.2	Gasification	67
6.2.1	Advanced thermal treatment processes	67
6.2.1.2	The process	68
6.2.1.3	Synthesis gas output	68
6.2.2	Gasification plant configurations	69
6.2.3	Preliminary treatment / volume reduction stage	69
6.2.4	Mechanical sorting stage	71
6.2.5	Thermal treatment stage	71
6.2.6	Emissions control stage	71
6.2.7	Product polishing / quality refining stage	72
6.2.8	Process outputs	72
6.2.9	Preparation for market	72
6.2.10	Concluding comments	72
6.3	Plasma gasification	73
6.3.1	Preliminary treatment / volume reduction stage	73
6.3.2	Mechanical sorting stage	75
6.3.3	Thermal treatment stage	75
6.3.4	Emissions control stage	76
6.3.5	Process outputs	76
6.3.6	Preparation for market	76
6.3.7	Concluding comments	76
6.4	Pyrolysis	77
6.4.1	Preliminary treatment / volume reduction stage	77
6.4.2	Mechanical sorting stage	79
6.4.3	Thermal treatment stage	79
6.4.4	Emissions control stage	79
6.4.5	Process outputs	80
6.4.6	Preparation for market	80
	Concluding comments	80
6.5	Mechanical heat treatment	81
6.5.1	Heat treatment process	81
	Autoclaving	81
	Thermal drying	81
6.5.2	Summary of thermal treatment systems	82
6.5.3	Mechanical heat treatment plant configurations	82
6.5.4	Preliminary treatment / volume reduction stage	82
	Thermal treatment stage / mechanical sorting treatment	82
	Thermal treatment	83
	Mechanical treatment	84
6.5.6	Emissions control stage	85
6.5.7	Product refining / quality control stage	85
	Process outputs	85
6.5.9	Preparation for market	86 86
6.5.10	Concluding comments	00
		- -
7	Conclusion	87
Appen	dix A: Technical Glossary	90

LIST OF FIGURES

Figure 1: Knowledge products in this series	1
Figure 2: The waste hierarchy	2
Figure 3: Flow diagram of municipal solid waste treatment technology types and scope	6
of this document	
Figure 4: Example composting mass balance	19
Figure 5: Composting process steps	20
Figure 6: Typical composting process flow diagram	21
Figure 7: Compost piles (Kyalami); composting windrows (image courtesy of Blue	22
Group)	
Figure 8: Typical clean MRF process flow diagram	28
Figure 9: (clockwise from top left) Mixed recyclable materials in tipping hall (image	29
courtesy of WRAP); manual picking line (image courtesy of WRAP); mixed plastics	
approaching a NIR sorting machine (image courtesy of Titech); baled separated HDPE	
plastic bottles (image courtesy of WRAP)	
Figure 10: Typical dirty MRF process flow diagram	35
Figure 11: (clockwise from top left) Trommel screen separates fines (image courtesy of	36
Ton Peal Recycling); conveyor belts move partially separated materials between	
processes (image courtesy of Neales Waste); shredded RDF (image courtesy of Sita);	
sorted material baled and wrapped ready for reprocessing (image courtesy of Neales	
Waste)	
Figure 12: Typical incineration process flow diagram	43
Figure 13: Example anaerobic digestion mass balance	45
Figure 14: Anaerobic digestion process steps	46
Figure 15: (clockwise from top left) Anaerobic digestion tanks (image courtesy of	49
WRAP); biogas CHP engine and cleaning equipment (image courtesy of WolfeWare	
Ltd); digestate spreading (image courtesy of Agrivert)	
Figure 16: Typical anaerobic digestion process flow diagram	50
Figure 17: Inside a tunnel method IVC facility (image courtesy of Viridor); IVC compost	57
(image courtesy of Sita)	
Figure 18: Typical in-vessel composting process flow diagram	58
Figure 19: Typical MBT process flow diagram	61
Figure 20: (clockwise from top left) Optical sorting (New Earth Solutions); bio	63
stabilisation (New Earth Solutions); anaerobic digestion and gas storage (Viridor)	
Figure 21: Refuse derived fuel bales ready for gasification; gasification ash residues	69
used as aggregate for road building (image courtesy of Ballast Phoenix)	
Figure 22: Typical gasification process flow diagram	70
Figure 23: Demonstration plasma torches (image courtesy of AlterNRG); delivery of	73
large (350k tonnes per annum) plasma gasifier in NE England (image courtesy of	
AlterNRG / Air Products)	
Figure 24: Typical plasma gasification process flow diagram	74
Figure 25: Modular pyrolysis units at Avonmouth, Bristol, UK (image courtesy of New	77
Earth Advanced Technology); char from pyrolysis of mixed feedstocks (image courtesy	
of Pacific Pyrolysis)	70
Figure 26: Typical pyrolysis process flow diagram	78
Figure 27: Typical MHT process flow diagram	83
Figure 28: (clockwise from top left) Non-pressurised heat vessels (Orchid	84
Environmental); end of process / emptying of an autoclave vessel; autoclaved waste;	
pelletised RDF from heat non-pressurised heat vessels (Orchid Environmental)	

APPENDIX A

Table 1: Typical plant configurations	4
Table 2: Overview of waste streams and suitable waste management treatment	10
options	
Table 3: Waste technologies classified by development status	15
Table 4: Key characteristics of windrow composting	21
Table 5: Key characteristics of clean MRFs	26
Table 6: Key characteristics of dirty MRFs	34
Table 7: Key characteristics of incineration	41
Table 8: Comparison of mesophilic and thermophilic anaerobic digestion	47
technologies	
Table 9: Key characteristics of anaerobic digestion	49
Table 10: Key characteristics of in-vessel composting	57
Table 11: Key characteristics of mechanical biological treatment	60
Table 12: Key characteristics of gasification	69
Table 13: Key characteristics of plasma gasification	73
Table 14: Key characteristics of pyrolysis	77
Table 15: Key characteristics of mechanical heat treatment	82
Table 16: Typical mechanical preparation technologies	91
Table 17: Typical mechanical separation technologies	92
Table 18: Typical mechanical polishing technologies	93
Table 19: Overview of combustion technology options	94
Table 20: Summary of in-vessel composting technologies	95
Table 21: Summary and comparison of biological treatment system	96
classifications	
Table 22: Summary of predominant thermal technologies	97
Table 23: Gasification treatment options	97
Table 24: Pyrolysis treatment options	97
Table 25: Summary of advanced thermal treatment options and key	98
characteristics	

ACKNOWLEDGEMENTS

Our sincere gratitude to all our partners who have contributed and supported our efforts in developing the document on Appropriate Technology for Advanced Waste Treatment:

- Bernhard Schenk, KfW Development Bank
- Julia Crause, KfW Development Bank
- Gernod Dilewski and team, Infrastruktur & Umwelt
- Torben Kristiansen and team, COWI
- Jenitha Badul and Greening Programmes & Fund team, Department of Environmental Affairs &
- The officials of Branch: Chemicals and Waste Management, Department of Environmental Affairs

This document was prepared by the Project Management Unit: Ekkehard Schwehn, ERM; Andy Whiteman, RWA Group; Paul Frith, Frith RM and Stuart Gower-Jackson, Jeffars and Green.

Our apologies if we excluded an individual or organisation.

Department of Environmental Affairs
Private Bag X447
Pretoria
Tel: +27 | 12 399 9000 ______

Fax:+27 12 359 3625

Call Centre: 086 111 2468 callcentre@environment.gov.za www.environment.gov.za

